2,140 research outputs found

    Efficient Normal-Form Parsing for Combinatory Categorial Grammar

    Full text link
    Under categorial grammars that have powerful rules like composition, a simple n-word sentence can have exponentially many parses. Generating all parses is inefficient and obscures whatever true semantic ambiguities are in the input. This paper addresses the problem for a fairly general form of Combinatory Categorial Grammar, by means of an efficient, correct, and easy to implement normal-form parsing technique. The parser is proved to find exactly one parse in each semantic equivalence class of allowable parses; that is, spurious ambiguity (as carefully defined) is shown to be both safely and completely eliminated.Comment: 8 pages, LaTeX packaged with three .sty files, also uses cgloss4e.st

    Structure preserving transformations on non-left-recursive grammars

    Get PDF
    We will be concerned with grammar covers, The first part of this paper presents a general framework for covers. The second part introduces a transformation from nonleft-recursive grammars to grammars in Greibach normal form. An investigation of the structure preserving properties of this transformation, which serves also as an illustration of our framework for covers, is presented

    An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities

    Full text link
    We describe an extension of Earley's parser for stochastic context-free grammars that computes the following quantities given a stochastic context-free grammar and an input string: a) probabilities of successive prefixes being generated by the grammar; b) probabilities of substrings being generated by the nonterminals, including the entire string being generated by the grammar; c) most likely (Viterbi) parse of the string; d) posterior expected number of applications of each grammar production, as required for reestimating rule probabilities. (a) and (b) are computed incrementally in a single left-to-right pass over the input. Our algorithm compares favorably to standard bottom-up parsing methods for SCFGs in that it works efficiently on sparse grammars by making use of Earley's top-down control structure. It can process any context-free rule format without conversion to some normal form, and combines computations for (a) through (d) in a single algorithm. Finally, the algorithm has simple extensions for processing partially bracketed inputs, and for finding partial parses and their likelihoods on ungrammatical inputs.Comment: 45 pages. Slightly shortened version to appear in Computational Linguistics 2

    Unsupervised Extraction of Representative Concepts from Scientific Literature

    Full text link
    This paper studies the automated categorization and extraction of scientific concepts from titles of scientific articles, in order to gain a deeper understanding of their key contributions and facilitate the construction of a generic academic knowledgebase. Towards this goal, we propose an unsupervised, domain-independent, and scalable two-phase algorithm to type and extract key concept mentions into aspects of interest (e.g., Techniques, Applications, etc.). In the first phase of our algorithm we propose PhraseType, a probabilistic generative model which exploits textual features and limited POS tags to broadly segment text snippets into aspect-typed phrases. We extend this model to simultaneously learn aspect-specific features and identify academic domains in multi-domain corpora, since the two tasks mutually enhance each other. In the second phase, we propose an approach based on adaptor grammars to extract fine grained concept mentions from the aspect-typed phrases without the need for any external resources or human effort, in a purely data-driven manner. We apply our technique to study literature from diverse scientific domains and show significant gains over state-of-the-art concept extraction techniques. We also present a qualitative analysis of the results obtained.Comment: Published as a conference paper at CIKM 201

    Incremental Interpretation: Applications, Theory, and Relationship to Dynamic Semantics

    Full text link
    Why should computers interpret language incrementally? In recent years psycholinguistic evidence for incremental interpretation has become more and more compelling, suggesting that humans perform semantic interpretation before constituent boundaries, possibly word by word. However, possible computational applications have received less attention. In this paper we consider various potential applications, in particular graphical interaction and dialogue. We then review the theoretical and computational tools available for mapping from fragments of sentences to fully scoped semantic representations. Finally, we tease apart the relationship between dynamic semantics and incremental interpretation.Comment: Procs. of COLING 94, LaTeX (2.09 preferred), 8 page
    • …
    corecore