22 research outputs found

    On the matrix square root via geometric optimization

    Full text link
    This paper is triggered by the preprint "\emph{Computing Matrix Squareroot via Non Convex Local Search}" by Jain et al. (\textit{\textcolor{blue}{arXiv:1507.05854}}), which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of~\citet{jain2015}, our experiments reveal that Newton-like methods compute matrix square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring commutativity. We observe that gradient-descent converges very slowly primarily due to tiny step-sizes and ill-conditioning. We derive an alternative first-order method based on geodesic convexity: our method admits a transparent convergence analysis (<1< 1 page), attains linear rate, and displays reliable convergence even for rank deficient problems. Though superior to gradient-descent, ultimately our method is also outperformed by a well-known scaled Newton method. Nevertheless, the primary value of our work is its conceptual value: it shows that for deriving gradient based methods for the matrix square root, \emph{the manifold geometric view of positive definite matrices can be much more advantageous than the Euclidean view}.Comment: 8 pages, 12 plots, this version contains several more references and more words about the rank-deficient cas

    Riemannian kernel based Nystr\"om method for approximate infinite-dimensional covariance descriptors with application to image set classification

    Full text link
    In the domain of pattern recognition, using the CovDs (Covariance Descriptors) to represent data and taking the metrics of the resulting Riemannian manifold into account have been widely adopted for the task of image set classification. Recently, it has been proven that infinite-dimensional CovDs are more discriminative than their low-dimensional counterparts. However, the form of infinite-dimensional CovDs is implicit and the computational load is high. We propose a novel framework for representing image sets by approximating infinite-dimensional CovDs in the paradigm of the Nystr\"om method based on a Riemannian kernel. We start by modeling the images via CovDs, which lie on the Riemannian manifold spanned by SPD (Symmetric Positive Definite) matrices. We then extend the Nystr\"om method to the SPD manifold and obtain the approximations of CovDs in RKHS (Reproducing Kernel Hilbert Space). Finally, we approximate infinite-dimensional CovDs via these approximations. Empirically, we apply our framework to the task of image set classification. The experimental results obtained on three benchmark datasets show that our proposed approximate infinite-dimensional CovDs outperform the original CovDs.Comment: 6 pages, 3 figures, International Conference on Pattern Recognition 201

    Riemannian Optimization via Frank-Wolfe Methods

    Full text link
    We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under which RFW can attain a linear convergence rate. As a concrete example, we specialize Rfw to the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian "linear oracle" required by RFW admits a closed-form solution; this result may be of independent interest. We further specialize RFW to the special orthogonal group and show that here too, the Riemannian "linear oracle" can be solved in closed form. Here, we describe an application to the synchronization of data matrices (Procrustes problem). We complement our theoretical results with an empirical comparison of Rfw against state-of-the-art Riemannian optimization methods and observe that RFW performs competitively on the task of computing Riemannian centroids.Comment: Under Review. Largely revised version, including an extended experimental section and an application to the special orthogonal group and the Procrustes proble

    Component SPD Matrices: A lower-dimensional discriminative data descriptor for image set classification

    Full text link
    In the domain of pattern recognition, using the SPD (Symmetric Positive Definite) matrices to represent data and taking the metrics of resulting Riemannian manifold into account have been widely used for the task of image set classification. In this paper, we propose a new data representation framework for image sets named CSPD (Component Symmetric Positive Definite). Firstly, we obtain sub-image sets by dividing the image set into square blocks with the same size, and use traditional SPD model to describe them. Then, we use the results of the Riemannian kernel on SPD matrices as similarities of corresponding sub-image sets. Finally, the CSPD matrix appears in the form of the kernel matrix for all the sub-image sets, and CSPDi,j denotes the similarity between i-th sub-image set and j-th sub-image set. Here, the Riemannian kernel is shown to satisfy the Mercer's theorem, so our proposed CSPD matrix is symmetric and positive definite and also lies on a Riemannian manifold. On three benchmark datasets, experimental results show that CSPD is a lower-dimensional and more discriminative data descriptor for the task of image set classification.Comment: 8 pages,5 figures, Computational Visual Media, 201

    A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning

    Full text link
    In this paper, we consider optimizing a smooth, convex, lower semicontinuous function in Riemannian space with constraints. To solve the problem, we first convert it to a dual problem and then propose a general primal-dual algorithm to optimize the primal and dual variables iteratively. In each optimization iteration, we employ a proximal operator to search optimal solution in the primal space. We prove convergence of the proposed algorithm and show its non-asymptotic convergence rate. By utilizing the proposed primal-dual optimization technique, we propose a novel metric learning algorithm which learns an optimal feature transformation matrix in the Riemannian space of positive definite matrices. Preliminary experimental results on an optimal fund selection problem in fund of funds (FOF) management for quantitative investment showed its efficacy.Comment: 8 pages, 2 figures, published as a conference paper in 2019 International Joint Conference on Neural Networks (IJCNN
    corecore