56 research outputs found

    Smart City Development with Urban Transfer Learning

    Full text link
    Nowadays, the smart city development levels of different cities are still unbalanced. For a large number of cities which just started development, the governments will face a critical cold-start problem: 'how to develop a new smart city service with limited data?'. To address this problem, transfer learning can be leveraged to accelerate the smart city development, which we term the urban transfer learning paradigm. This article investigates the common process of urban transfer learning, aiming to provide city planners and relevant practitioners with guidelines on how to apply this novel learning paradigm. Our guidelines include common transfer strategies to take, general steps to follow, and case studies in public safety, transportation management, etc. We also summarize a few research opportunities and expect this article can attract more researchers to study urban transfer learning

    RIDESOURCING IN MANUFACTURING SITES: A FRAMEWORK AND CASE STUDY

    Get PDF
    With the recent innovations in transportation, ridesourcing services have been proliferating in many countries. There are increasing attempts to apply ridesourcing in the corporate context. Manufacturing companies now install the Industrial Internet of Things (IIOT) sensors to vehicles to obtain real-time data on the movement of goods and materials. Despite the massive amount of data accumulated, little attention has been paid to exploiting the data for vehicle fleet management (FM). This paper proposes an analytical framework to solve two FM problems: how to group organizational units for vehicle sharing and where to deploy the groups. The framework is then validated with a case study of a Korean shipbuilder. The results indicate that grouping departments with similar spatial patterns can reduce the current fleet

    Current state of the art and use case description on geofencing for traffic management

    Get PDF
    This report is a result of a literature review and document gathering focused on geofence use cases specific for road traffic management. It presents geofence use cases that are trialled or to be trialled, implemented use cases, as well as conceptual and potential future use cases, showing for which type of transport they are used and how geofence zones are applied or to be applied. The report was conducted in the project GeoSence – Geofencing strategies for implementation in urban traffic management and planning. It is a Joint programme initiative (JPI) Urban Europe project funded by European Union´s Horizon 2020, under ERA-NET Cofund Urban Accessibility and Connectivity and gather project partners from Germany, Norway, Sweden and UK. The goal is to present the current state of art, and describe use cases, based on the working definition of geofencing in the project, where geofence is defined as a virtual geographically located boundary, statically or dynamically defined. The study shows that for implemented and real-traffic trial use case, geofencing has been applied within private car transport, shared micro-mobility, freight and logistics, public bus transportation and ridesourcing. For the future use cases, geofencing has been tested or conceptually developed also for automated vehicles and shared automated mobility, among others. The report summarises main use cases and find them to answering to especially four challenges in traffic management: safety, environment, efficiency, and tracking and data collection. Some of the use cases however answer to several of these challenges, such as differentiated road charging, and the use cases in micro-mobility. Further, the system and functionality of the trialled and/or implemented use cases, show different types of regulation geofence use cases can be used for, from informing, assisting, full enforcement, incentivising and penalisation. Guidelines and recommendations so far form national authorities show that the existence of joint regulation or guidelines for the use of geofencing for different use cases is low – with some exceptions. Digital representation of traffic regulation will be crucial for enabling geofencing

    Editorial: A better tomorrow: towards human-oriented, sustainable transportation systems

    Get PDF
    In a rapidly changing world, transportation is a big determinant of quality of life, financial growth and progress. New challenges (such as the emergence of the COVID-19 pandemic) and opportunities (such as the three revolutions of shared, electric and automated mobility) are expected to drastically change the future mobility landscape. Researchers, policy makers and practitioners are working hard to prepare for and shape the future of mobility that will maximize benefits. Adopting a human perspective as a guiding principle in this endeavor is expected to help prioritize the “right” needs as requirements. In this special issue, eight research papers outline ways in which transportation research can contribute to a better tomorrow. In this editorial, we position the research within the state-of-the-art, identify the needs for future research, and then outline how the included contributions fit in this puzzle. Naturally, the problem of sustainable future transportation systems is way too complicated to be covered with a single special issue. We thus conclude this editorial with a discussion about open questions and future research topics

    Networking Transportation

    Get PDF
    Networking Transportation looks at how the digital revolution is changing Greater Philadelphia's transportation system. It recognizes several key digital transportation technologies: Artificial Intelligence, Big Data, connected and automated vehicles, digital mapping, Intelligent Transportation Systems, the Internet of Things, smart cities, real-time information, transportation network companies (TNCs), unmanned aerial systems, and virtual communications. It focuses particularly on key issues surrounding TNCs. It identifies TNCs currently operating in Greater Philadelphia and reviews some of the more innovative services around the world. It presents four alternative future scenarios for their growth: Filling a Niche, A Tale of Two Regions, TNCs Take Off, and Moore Growth. It then creates a future vision for an integrated, multimodal transportation network and identifies infrastructure needs, institutional reforms, and regulatory recommendations intended to help bring about this vision

    Ride-sourcing compared to its public-transit alternative using big trip data

    Get PDF
    Ride-sourcing risks increasing\ua0GHG emissions\ua0by replacing public transit (PT) for some trips therefore, understanding the relation of ride-sourcing to PT in urban mobility is crucial. This study explores the competition between ride-sourcing and PT through the lens of big data analysis. This research uses 4.3 million ride-sourcing trip records collected from Chengdu, China over a month, dividing these into two categories, transit-competing (48.2%) and non-transit-competing (51.8%). Here, a ride-sourcing trip is labelled transit-competing if and only if it occurs during the day and there is a PT alternative such that the walking distance associated with it is less than 800\ua0m for access and egress alike. We construct a glass-box model to characterise the two ride-sourcing trip categories based on trip attributes and the built environment from the enriched trip data. This study provides a good overview of not only the main factors affecting the relationship between ride-sourcing and PT, but also the interactions between those factors. The built environment, as characterised by points of interest (POIs) and transit-stop density, is the most important aspect followed by travel time, number of transfers, weather, and a series of interactions between them. Competition is more likely to arise if: (1) the travel time by ride-sourcing <15\ua0min or the travel time by PT is disproportionately longer than ride-sourcing; (2) the PT alternative requires multiple transfers, especially for the trips happening within the transition area between the central city and the outskirts; (3) the weather is good; (4)\ua0land use\ua0is high-density and high-diversity; (5) transit access is good, especially for the areas featuring a large number of business and much real estate. Based on the main findings, we discuss a few recommendations for transport planning and policymaking

    Data-Driven Framework for Understanding & Modeling Ride-Sourcing Transportation Systems

    Get PDF
    Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for all trips made within the city since November 1, 2018. The data comprises the trip ends (pick-up and drop-off locations), trip timestamps, trip length and duration, fare including tipping amounts, and whether the trip was authorized to be shared (pooled) with another passenger or not. Therefore, the main goal of this dissertation is to develop a comprehensive data-driven framework to understand and model the system using this data from Chicago, in a reproducible and transferable fashion. Using data fusion approach, sociodemographic, economic, parking supply, transit availability and accessibility, built environment and crime data are collected from open sources to develop this framework. The framework is predicated on three pillars of analytics: (1) explorative and descriptive analytics, (2) diagnostic analytics, and (3) predictive analytics. The dissertation research framework also provides a guide on the key spatial and behavioral explanatory variables shaping the utility of the mode, driving the demand, and governing the interdependencies between the demand’s willingness to share and surge price. Thus, the key findings can be readily challenged, verified, and utilized in different geographies. In the explorative and descriptive analytics, the ride-sourcing system’s spatial and temporal dimensions of the system are analyzed to achieve two objectives: (1) explore, reveal, and assess the significance of spatial effects, i.e., spatial dependence and heterogeneity, in the system behavior, and (2) develop a behavioral market segmentation and trend mining of the willingness to share. This is linked to the diagnostic analytics layer, as the revealed spatial effects motivates the adoption of spatial econometric models to analytically identify the ride-sourcing system determinants. Multiple linear regression (MLR) is used as a benchmark model against spatial error model (SEM), spatially lagged X (SLX) model, and geographically weighted regression (GWR) model. Two innovative modeling constructs are introduced deal with the ride-sourcing system’s spatial effects and multicollinearity: (1) Calibrated Spatially Lagged X Ridge Model (CSLXR) and Calibrated Geographically Weighted Ridge Regression (CGWRR) in the diagnostic analytics layer. The identified determinants in the diagnostic analytics layer are then fed into the predictive analytics one to develop an interpretable machine learning (ML) modeling framework. The system’s annual average weekday origin-destination (AAWD OD) flow is modeled using the following state-of-the-art ML models: (1) Multilayer Perceptron (MLP) Regression, (2) Support Vector Machines Regression (SVR), and (3) Tree-based ensemble learning methods, i.e., Random Forest Regression (RFR) and Extreme Gradient Boosting (XGBoost). The innovative modeling construct of CGWRR developed in the diagnostic analytics is then validated in a predictive context and is found to outperform the state-of-the-art ML models in terms of testing score of 0.914, in comparison to 0.906 for XGBoost, 0.84 for RFR, 0.89 for SVR, and 0.86 for MLP. The CGWRR exhibits outperformance as well in terms of the root mean squared error (RMSE) and mean average error (MAE). The findings of this dissertation partially bridge the gap between the practice and the research on ride-sourcing transportation systems understanding and integration. The empirical findings made in the descriptive and explorative analytics can be further utilized by regional agencies to fill practice and policymaking gaps on regulating ride-sourcing services using corridor or cordon toll, optimally allocating standing areas to minimize deadheading, especially during off-peak periods, and promoting the ride-share willingness in disadvantage communities. The CGWRR provides a reliable modeling and simulation tool to researchers and practitioners to integrate the ride-sourcing system in multimodal transportation modeling frameworks, simulation testbed for testing long-range impacts of policies on ride-sourcing, like improved transit supply, congestions pricing, or increased parking rates, and to plan ahead for similar futuristic transportation modes, like the shared autonomous vehicles
    • …
    corecore