692 research outputs found

    OBJ2TEXT: Generating Visually Descriptive Language from Object Layouts

    Full text link
    Generating captions for images is a task that has recently received considerable attention. In this work we focus on caption generation for abstract scenes, or object layouts where the only information provided is a set of objects and their locations. We propose OBJ2TEXT, a sequence-to-sequence model that encodes a set of objects and their locations as an input sequence using an LSTM network, and decodes this representation using an LSTM language model. We show that our model, despite encoding object layouts as a sequence, can represent spatial relationships between objects, and generate descriptions that are globally coherent and semantically relevant. We test our approach in a task of object-layout captioning by using only object annotations as inputs. We additionally show that our model, combined with a state-of-the-art object detector, improves an image captioning model from 0.863 to 0.950 (CIDEr score) in the test benchmark of the standard MS-COCO Captioning task.Comment: Accepted at EMNLP 201

    Multi-Task Video Captioning with Video and Entailment Generation

    Full text link
    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware video encoder representations, and a logically-directed language entailment generation task to learn better video-entailed caption decoder representations. For this, we present a many-to-many multi-task learning model that shares parameters across the encoders and decoders of the three tasks. We achieve significant improvements and the new state-of-the-art on several standard video captioning datasets using diverse automatic and human evaluations. We also show mutual multi-task improvements on the entailment generation task.Comment: ACL 2017 (14 pages w/ supplementary

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Support-set bottlenecks for video-text representation learning

    Full text link
    The dominant paradigm for learning video-text representations -- noise contrastive learning -- increases the similarity of the representations of pairs of samples that are known to be related, such as text and video from the same sample, and pushes away the representations of all other pairs. We posit that this last behaviour is too strict, enforcing dissimilar representations even for samples that are semantically-related -- for example, visually similar videos or ones that share the same depicted action. In this paper, we propose a novel method that alleviates this by leveraging a generative model to naturally push these related samples together: each sample's caption must be reconstructed as a weighted combination of other support samples' visual representations. This simple idea ensures that representations are not overly-specialized to individual samples, are reusable across the dataset, and results in representations that explicitly encode semantics shared between samples, unlike noise contrastive learning. Our proposed method outperforms others by a large margin on MSR-VTT, VATEX and ActivityNet, and MSVD for video-to-text and text-to-video retrieval.Comment: Accepted as spotlight paper at the International Conference on Learning Representations (ICLR) 202

    Visual Question Answering: A Survey of Methods and Datasets

    Full text link
    Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. Given an image and a question in natural language, it requires reasoning over visual elements of the image and general knowledge to infer the correct answer. In the first part of this survey, we examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to connect the visual and textual modalities. In particular, we examine the common approach of combining convolutional and recurrent neural networks to map images and questions to a common feature space. We also discuss memory-augmented and modular architectures that interface with structured knowledge bases. In the second part of this survey, we review the datasets available for training and evaluating VQA systems. The various datatsets contain questions at different levels of complexity, which require different capabilities and types of reasoning. We examine in depth the question/answer pairs from the Visual Genome project, and evaluate the relevance of the structured annotations of images with scene graphs for VQA. Finally, we discuss promising future directions for the field, in particular the connection to structured knowledge bases and the use of natural language processing models.Comment: 25 page
    • …
    corecore