40 research outputs found

    Attention-based Extraction of Structured Information from Street View Imagery

    Full text link
    We present a neural network model - based on CNNs, RNNs and a novel attention mechanism - which achieves 84.2% accuracy on the challenging French Street Name Signs (FSNS) dataset, significantly outperforming the previous state of the art (Smith'16), which achieved 72.46%. Furthermore, our new method is much simpler and more general than the previous approach. To demonstrate the generality of our model, we show that it also performs well on an even more challenging dataset derived from Google Street View, in which the goal is to extract business names from store fronts. Finally, we study the speed/accuracy tradeoff that results from using CNN feature extractors of different depths. Surprisingly, we find that deeper is not always better (in terms of accuracy, as well as speed). Our resulting model is simple, accurate and fast, allowing it to be used at scale on a variety of challenging real-world text extraction problems.Comment: Updated references, added link to the source cod

    Analysing Dropout and Compounding Errors in Neural Language Models

    Full text link
    This paper carries out an empirical analysis of various dropout techniques for language modelling, such as Bernoulli dropout, Gaussian dropout, Curriculum Dropout, Variational Dropout and Concrete Dropout. Moreover, we propose an extension of variational dropout to concrete dropout and curriculum dropout with varying schedules. We find these extensions to perform well when compared to standard dropout approaches, particularly variational curriculum dropout with a linear schedule. Largest performance increases are made when applying dropout on the decoder layer. Lastly, we analyze where most of the errors occur at test time as a post-analysis step to determine if the well-known problem of compounding errors is apparent and to what end do the proposed methods mitigate this issue for each dataset. We report results on a 2-hidden layer LSTM, GRU and Highway network with embedding dropout, dropout on the gated hidden layers and the output projection layer for each model. We report our results on Penn-TreeBank and WikiText-2 word-level language modelling datasets, where the former reduces the long-tail distribution through preprocessing and one which preserves rare words in the training and test set

    On Controlled DeEntanglement for Natural Language Processing

    Full text link
    Latest addition to the toolbox of human species is Artificial Intelligence(AI). Thus far, AI has made significant progress in low stake low risk scenarios such as playing Go and we are currently in a transition toward medium stake scenarios such as Visual Dialog. In my thesis, I argue that we need to incorporate controlled de-entanglement as first class object to succeed in this transition. I present mathematical analysis from information theory to show that employing stochasticity leads to controlled de-entanglement of relevant factors of variation at various levels. Based on this, I highlight results from initial experiments that depict efficacy of the proposed framework. I conclude this writeup by a roadmap of experiments that show the applicability of this framework to scalability, flexibility and interpretibility

    Connecting the Dots Between MLE and RL for Sequence Prediction

    Full text link
    Sequence prediction models can be learned from example sequences with a variety of training algorithms. Maximum likelihood learning is simple and efficient, yet can suffer from compounding error at test time. Reinforcement learning such as policy gradient addresses the issue but can have prohibitively poor exploration efficiency. A rich set of other algorithms such as RAML, SPG, and data noising, have also been developed from different perspectives. This paper establishes a formal connection between these algorithms. We present a generalized entropy regularized policy optimization formulation, and show that the apparently distinct algorithms can all be reformulated as special instances of the framework, with the only difference being the configurations of a reward function and a couple of hyperparameters. The unified interpretation offers a systematic view of the varying properties of exploration and learning efficiency. Besides, inspired from the framework, we present a new algorithm that dynamically interpolates among the family of algorithms for scheduled sequence model learning. Experiments on machine translation, text summarization, and game imitation learning demonstrate the superiority of the proposed algorithm.Comment: Major revision. The first two authors contributed equall

    A Deep Reinforced Model for Abstractive Summarization

    Full text link
    Attentional, RNN-based encoder-decoder models for abstractive summarization have achieved good performance on short input and output sequences. For longer documents and summaries however these models often include repetitive and incoherent phrases. We introduce a neural network model with a novel intra-attention that attends over the input and continuously generated output separately, and a new training method that combines standard supervised word prediction and reinforcement learning (RL). Models trained only with supervised learning often exhibit "exposure bias" - they assume ground truth is provided at each step during training. However, when standard word prediction is combined with the global sequence prediction training of RL the resulting summaries become more readable. We evaluate this model on the CNN/Daily Mail and New York Times datasets. Our model obtains a 41.16 ROUGE-1 score on the CNN/Daily Mail dataset, an improvement over previous state-of-the-art models. Human evaluation also shows that our model produces higher quality summaries

    Better Long-Range Dependency By Bootstrapping A Mutual Information Regularizer

    Full text link
    In this work, we develop a novel regularizer to improve the learning of long-range dependency of sequence data. Applied on language modelling, our regularizer expresses the inductive bias that sequence variables should have high mutual information even though the model might not see abundant observations for complex long-range dependency. We show how the `next sentence prediction (classification)' heuristic can be derived in a principled way from our mutual information estimation framework, and be further extended to maximize the mutual information of sequence variables. The proposed approach not only is effective at increasing the mutual information of segments under the learned model but more importantly, leads to a higher likelihood on holdout data, and improved generation quality. Code is released at https://github.com/BorealisAI/BMI.Comment: Camera-ready for AISTATS 202

    Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation

    Full text link
    We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks that transform any inputs into natural language, such as machine translation, summarization, dialog, content manipulation, and so forth. With the design goals of modularity, versatility, and extensibility in mind, Texar extracts common patterns underlying the diverse tasks and methodologies, creates a library of highly reusable modules, and allows arbitrary model architectures and algorithmic paradigms. In Texar, model architecture, inference, and learning processes are properly decomposed. Modules at a high concept level can be freely assembled and plugged in/swapped out. The toolkit also supports a rich set of large-scale pretrained models. Texar is thus particularly suitable for researchers and practitioners to do fast prototyping and experimentation. The versatile toolkit also fosters technique sharing across different text generation tasks. Texar supports both TensorFlow and PyTorch, and is released under Apache License 2.0 at https://www.texar.io.Comment: ACL 2019 demo, expanded versio

    Cold-Start Reinforcement Learning with Softmax Policy Gradient

    Full text link
    Policy-gradient approaches to reinforcement learning have two common and undesirable overhead procedures, namely warm-start training and sample variance reduction. In this paper, we describe a reinforcement learning method based on a softmax value function that requires neither of these procedures. Our method combines the advantages of policy-gradient methods with the efficiency and simplicity of maximum-likelihood approaches. We apply this new cold-start reinforcement learning method in training sequence generation models for structured output prediction problems. Empirical evidence validates this method on automatic summarization and image captioning tasks.Comment: Conference on Neural Information Processing Systems 2017. Main paper and supplementary materia

    Context-Dependent Semantic Parsing over Temporally Structured Data

    Full text link
    We describe a new semantic parsing setting that allows users to query the system using both natural language questions and actions within a graphical user interface. Multiple time series belonging to an entity of interest are stored in a database and the user interacts with the system to obtain a better understanding of the entity's state and behavior, entailing sequences of actions and questions whose answers may depend on previous factual or navigational interactions. We design an LSTM-based encoder-decoder architecture that models context dependency through copying mechanisms and multiple levels of attention over inputs and previous outputs. When trained to predict tokens using supervised learning, the proposed architecture substantially outperforms standard sequence generation baselines. Training the architecture using policy gradient leads to further improvements in performance, reaching a sequence-level accuracy of 88.7% on artificial data and 74.8% on real data.Comment: Accepted by NAACL 2019 (Oral presentation

    Trust-PCL: An Off-Policy Trust Region Method for Continuous Control

    Full text link
    Trust region methods, such as TRPO, are often used to stabilize policy optimization algorithms in reinforcement learning (RL). While current trust region strategies are effective for continuous control, they typically require a prohibitively large amount of on-policy interaction with the environment. To address this problem, we propose an off-policy trust region method, Trust-PCL. The algorithm is the result of observing that the optimal policy and state values of a maximum reward objective with a relative-entropy regularizer satisfy a set of multi-step pathwise consistencies along any path. Thus, Trust-PCL is able to maintain optimization stability while exploiting off-policy data to improve sample efficiency. When evaluated on a number of continuous control tasks, Trust-PCL improves the solution quality and sample efficiency of TRPO.Comment: ICLR 201
    corecore