34 research outputs found

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Server-Aided Revocable Predicate Encryption: Formalization and Lattice-Based Instantiation

    Full text link
    Efficient user revocation is a necessary but challenging problem in many multi-user cryptosystems. Among known approaches, server-aided revocation yields a promising solution, because it allows to outsource the major workloads of system users to a computationally powerful third party, called the server, whose only requirement is to carry out the computations correctly. Such a revocation mechanism was considered in the settings of identity-based encryption and attribute-based encryption by Qin et al. (ESORICS 2015) and Cui et al. (ESORICS 2016), respectively. In this work, we consider the server-aided revocation mechanism in the more elaborate setting of predicate encryption (PE). The latter, introduced by Katz, Sahai, and Waters (EUROCRYPT 2008), provides fine-grained and role-based access to encrypted data and can be viewed as a generalization of identity-based and attribute-based encryption. Our contribution is two-fold. First, we formalize the model of server-aided revocable predicate encryption (SR-PE), with rigorous definitions and security notions. Our model can be seen as a non-trivial adaptation of Cui et al.'s work into the PE context. Second, we put forward a lattice-based instantiation of SR-PE. The scheme employs the PE scheme of Agrawal, Freeman and Vaikuntanathan (ASIACRYPT 2011) and the complete subtree method of Naor, Naor, and Lotspiech (CRYPTO 2001) as the two main ingredients, which work smoothly together thanks to a few additional techniques. Our scheme is proven secure in the standard model (in a selective manner), based on the hardness of the Learning With Errors (LWE) problem.Comment: 24 page

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Generic Construction of Server-Aided Revocable Hierarchical Identity-Based Encryption with Decryption Key Exposure Resistance

    Get PDF
    In this paper, we extend the notion of server-aided revocable identity-based encryption (SR-IBE) to the hierarchical IBE (HIBE) setting and propose a generic construction of server-aided revocable hierarchical IBE (SR-HIBE) schemes with decryption key exposure resistance (DKER) from any (weak) L-level revocable HIBE scheme without DKER and (L+1)-level HIBE scheme. In order to realize the server-aided revocation mechanism, we use the “double encryption” technique, and this makes our construction has short ciphertext size. Furthermore, when the maximum hierarchical depth is one, we obtain a generic construction of SR-IBE schemes with DKER from any IBE scheme and two-level HIBE scheme

    Generic Constructions of RIBE via Subset Difference Method

    Get PDF
    Revocable identity-based encryption (RIBE) is an extension of IBE which can support a key revocation mechanism, and it is important when deploying an IBE system in practice. Boneh and Franklin (Crypto\u2701) presented the first generic construction of RIBE, however, their scheme is not scalable where the size of key updates is linear in the number of users in the system. The first generic construction of RIBE is presented by Ma and Lin with complete subtree (CS) method by combining IBE and hierarchical IBE (HIBE) schemes. Recently, Lee proposed a new generic construction using the subset difference (SD) method by combining IBE,identity-based revocation (IBR), and two-level HIBE schemes. In this paper, we present a new primitive called Identity-Based Encryption with Ciphertext Delegation (CIBE) and propose a generic construction of RIBE scheme via subset difference method using CIBE and HIBE as building blocks. CIBE is a special type of Wildcarded IBE (WIBE) and Identity-Based Broadcast Encryption (IBBE). Furthermore, we show that CIBE can be constructed from IBE in a black-box way. Instantiating the underlying building blocks with different concrete schemes, we can obtain a RIBE scheme with constant-size public parameter, ciphertext, private key and O(r)O(r) key updates in the selective-ID model. Additionally, our generic RIBE scheme can be easily converted to a sever-aided RIBE scheme which is more suitable for lightweight devices

    Unbounded Hierarchical Identity-Based Encryption with Efficient Revocation

    Get PDF
    Hierarchical identity-based encryption (HIBE) is an extension of identity-based encryption (IBE) where an identity of a user is organized as a hierarchical structure and a user can delegate the private key generation to another user. Providing a revocation mechanism for HIBE is highly necessary to keep a system securely. Revocable HIBE (RHIBE) is an HIBE scheme that can revoke a user\u27s private key if his credential is expired or revealed. In this paper, we first propose an unbounded HIBE scheme where the maximum hierarchy depth is not limited and prove its selective security under a q-type assumption. Next, we propose an efficient unbounded RHIBE scheme by combining our unbounded HIBE scheme and a binary tree structure, and then we prove its selective security. By presenting the unbounded RHIBE scheme, we solve the open problem of Seo and Emura in CT-RSA 2015

    Lattice-based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance

    Get PDF
    Revocable identity-based encryption (RIBE) is an extension of IBE that supports a key revocation mechanism; an indispensable feature for practical cryptographic schemes. Due to this extra feature, RIBE is often required to satisfy a strong security notion unique to the revocation setting called decryption key exposure resistance (DKER). Additionally, hierarchal IBE (HIBE) is another orthogonal extension of IBE that supports key delegation functionalities allowing for scalable deployments of cryptographic schemes. Thus far, R(H)IBE constructions with DKER are only known from bilinear maps, where all constructions rely heavily on the so-called key re-randomization property to achieve the DKER and/or hierarchal feature. Since lattice-based schemes seem to be inherently ill-fit with the key re-randomization property, we currently do not know of any lattice-based R(H)IBE schemes with DKER. In this paper, we propose the first lattice-based RHIBE scheme with DKER without relying on the key re-randomization property, departing from all the previously known methods. We start our work by providing a generic construction of RIBE schemes with DKER, which uses as building blocks any two-level standard HIBE scheme and (weak) RIBE scheme without DKER. Based on previous lattice-based RIBE constructions, our result implies the first lattice-based RIBE scheme with DKER. Then, building on top of our generic construction, we construct the first lattice-based RHIBE scheme with DKER, by further exploiting the algebraic structure of lattices. To this end, we prepare a new tool called the level conversion keys, which allows us to achieve the hierarchal feature without relying on the key re-randomization property

    Adaptively Secure Revocable Hierarchical IBE from kk-linear Assumption

    Get PDF
    Revocable identity-based encryption (RIBE) is an extension of IBE with an efficient key revocation mechanism. Revocable hierarchical IBE (RHIBE) is its further extension with key delegation functionality. Although there are various adaptively secure pairing-based RIBE schemes, all known hierarchical analogs only satisfy selective security. In addition, the currently known most efficient adaptively secure RIBE and selectively secure RHIBE schemes rely on non-standard assumptions, which are referred to as the augmented DDH assumption and qq-type assumptions, respectively. In this paper, we propose a simple but effective design methodology for RHIBE schemes. We provide a generic design framework for RHIBE based on an HIBE scheme with a few properties. Fortunately, several state-of-the-art pairing-based HIBE schemes have the properties. In addition, our construction preserves the sizes of master public keys, ciphertexts, and decryption keys, as well as the complexity assumptions of the underlying HIBE scheme. Thus, we obtain the first RHIBE schemes with adaptive security under the standard kk-linear assumption. We prove adaptive security by developing a new proof technique for RHIBE. Due to the compactness-preserving construction, the proposed R(H)IBE schemes have similar efficiencies to the most efficient existing schemes

    Revocable Hierarchical Identity-Based Encryption with Shorter Private Keys and Update Keys

    Get PDF
    Revocable hierarchical identity-based encryption (RHIBE) is an extension of HIBE that supports the revocation of user\u27s private keys to manage the dynamic credentials of users in a system. Many different RHIBE schemes were proposed previously, but they are not efficient in terms of the private key size and the update key size since the depth of a hierarchical identity is included as a multiplicative factor. In this paper, we propose efficient RHIBE schemes with shorter private keys and update keys and small public parameters by removing this multiplicative factor. To achieve our goals, we first present a new HIBE scheme with the different generation of private keys such that a private key can be simply derived from a short intermediate private key. Next, we show that two efficient RHIBE schemes can be built by combining our HIBE scheme, an IBE scheme, and a tree based broadcast encryption scheme in a modular way
    corecore