4 research outputs found

    Revisiting the Yeast Cell Cycle Problem with the Improved TriGen Algorithm

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. On a previous work we presented the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that take into account the experimental conditions and the time points simultaneously, and was applied to the yeast (Saccharomyces Cerevisiae) cell cycle problem. In this article we present some improvements on the genetic algorithm and we also present the results of applying the improved TriGen algorithm to the yeast cell cycle problem, where the goal is to identify all genes whose expression levels are regulated by the cell cycle

    TriGen: A genetic algorithm to mine triclusters in temporal gene expression data

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at several time points. We present the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that take into account the experimental conditions and the time points simultaneously. We have used TriGen to mine datasets related to synthetic data, yeast (Saccharomyces cerevisiae) cell cycle and human inflammation and host response to injury experiments. TriGen has proved to be capable of extracting groups of genes with similar patterns in subsets of conditions and times, and these groups have shown to be related in terms of their functional annotations extracted from the Gene Ontology.Ministerio de Ciencia y Tecnolog铆a TIN2011-28956-C00Ministerio de Ciencia y Tecnolog铆a TIN2009-13950Junta de Andaluc铆a TIC-752

    TrLab: Una metodolog铆a para la extracci贸n y evaluaci贸n de patrones de comportamiento de grandes vol煤menes de datos biol贸gicos dependientes del tiempo

    Get PDF
    La tecnolog铆a de microarray ha revolucionado la investigaci贸n biotecnol贸gica gracias a la posibilidad de monitorizar los niveles de concentraci贸n de ARN. El an谩lisis de dichos datos representa un reto computacional debido a sus caracter铆sticas. Las t茅cnicas de Clustering han sido ampliamente aplicadas para crear grupos de genes que exhiben comportamientos similares. El Biclustering emerge como una valiosa herramienta para el an谩lisis de microarrays ya que relaja la restricci贸n de agrupamiento permitiendo que los genes sean evaluados s贸lo bajo un subconjunto de condiciones experimentales. Sin embargo, ante la consideraci贸n de una tercera dimensi贸n, el tiempo, el Triclustering se presenta como la herramienta apropiada para el an谩lisis de experimentos longitudinales en los que los genes son evaluados bajo un cierto subconjunto de condiciones en un subconjunto de puntos temporales. Estos triclusters proporcionan informaci贸n oculta en forma de patr贸n de comportamiento para experimentos temporales con microarrays. En esta investigaci贸n se presenta TrLab, una metodolog铆a para la extracci贸n de patrones de comportamiento de grandes vol煤menes de datos biol贸gicos dependientes del tiempo. Esta metodolog铆a incluye el algoritmo TriGen, un algoritmo gen茅tico para la b煤squeda de triclusters, teniendo en cuenta de forma simult谩nea, los genes, condiciones experimentales y puntos temporales que lo componen, adem谩s de tres medidas de evaluaci贸n que conforman el n煤cleo de dicho algoritmo as铆 como una medida de calidad para los triclusters encontrados. Todas estas aportaciones estar谩n integradas en una aplicaci贸n con interfaz gr谩fica que permita su f谩cil utilizaci贸n por parte de expertos en el campo de la biolog铆a. Las tres medidas de evaluaci贸n desarrolladas son: MSR3D basada en la adaptaci贸n a las tres dimensiones del Residuo Cuadr谩tico Medio, LSL basada en el c谩lculo de la recta de m铆nimos cuadrados que mejor ajusta la representaci贸n gr谩fica del tricluster y MSL basada en el c谩lculo de los 谩ngulos que forman el patr贸n de comportamiento del tricluster. La medida de calidad se denomina TRIQ y aglutina todos los aspectos que determinan el valor de un tricluster: calidad de correlaci贸n, gr谩fica y biol贸gica

    Green Glycol: A Novel 2-Step Process

    Get PDF
    Ethylene glycol demand is growing rapidly, particularly in the global polyethylene terephthalate markets.鹿 Traditional production of non-renewable ethylene glycol involves steam cracking of ethane or the methanol-to-olefin process to obtain ethylene.6 In response to environmental movements, Coca-Cola庐 began creating ethylene glycol from renewably sourced ethanol, by producing the ethylene oxide intermediate in a two-step reaction process.虏 Novel research at Leiden University, entitled Direct conversion of ethanol into ethylene oxide on gold based catalysts, explores a catalyst which produces ethylene oxide in one step, showing potential for a more efficient renewable process.鲁 This project explores the scaling of the Leiden research to an industrial level. The makeup raw material flows accounting for the recycle streams in the process are 237,000 MT fuel-grade ethanol per year, 81,000 MT oxygen per year, and 26,000 MT carbon dioxide diluent per year. The design first reacts ethanol and low concentration oxygen feeds to form an ethylene oxide intermediate, as well as undesired byproducts. A series of separations isolate ethylene oxide for further reaction, while recycling unconverted feeds and diluents. EO is then hydrolyzed to form mono-, di-, tri-, and higher order glycols. The following separation series removes water for recycle, then isolates fiber grade (99.9 wt%) monoethylene glycol as the main product. The bottoms of this separation results in an ethylene glycol mixture that is sold as a slurry for additional revenue. A financial analysis of the process over a 15 year period shows that the process does not directly compete with the existing monoethylene glycol market. However, a 14.5% green premium on the selling price of monoethylene glycol would reach a 15% IRR and achieve profitability. Future work should be focused on investigating catalyst performance and reproducing similar reaction behavior in industrial-scale conditions
    corecore