241 research outputs found

    Improving Real-World Performance of Vision Aided Navigation in a Flight Environment

    Get PDF
    The motivation of this research is to fuse information from an airborne imaging sensor with information extracted from satellite imagery in order to provide accurate position when GPS is unavailable for an extended duration. A corpus of existing geo-referenced satellite imagery is used to create a key point database. A novel algorithm for recovering coarse pose using by comparing key points extracted from the airborne imagery to the reference database is developed. This coarse position is used to bootstrap a local-area geo-registration algorithm, which provides GPS-level position estimates. This research derives optimizations for existing local-area methods for operation in flight environments

    Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation.

    Full text link
    This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow-at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset

    Universal Plug-n-Play Sensor Integration for Advanced Navigation

    Get PDF
    This research investigates the potential for Plug-n-Play sensor integration for navigation and other applications. Specifically, the requirements of such a system are outlined and attempts are made to achieve them using two separate systems: one using Robot Operating System (ROS) as middleware and the other using more traditional software design patterns. The end result is not so much a deliverable in terms of software, but more of a feasibility analysis comparing the two approaches

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Accurate Calibration of Multi-LiDAR-Multi-Camera Systems

    Get PDF
    As autonomous driving attracts more and more attention these days, the algorithms and sensors used for machine perception become popular in research, as well. This paper investigates the extrinsic calibration of two frequently-applied sensors: the camera and Light Detection and Ranging (LiDAR). The calibration can be done with the help of ordinary boxes. It contains an iterative refinement step, which is proven to converge to the box in the LiDAR point cloud, and can be used for system calibration containing multiple LiDARs and cameras. For that purpose, a bundle adjustment-like minimization is also presented. The accuracy of the method is evaluated on both synthetic and real-world data, outperforming the state-of-the-art techniques. The method is general in the sense that it is both LiDAR and camera-type independent, and only the intrinsic camera parameters have to be known. Finally, a method for determining the 2D bounding box of the car chassis from LiDAR point clouds is also presented in order to determine the car body border with respect to the calibrated sensors

    Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation

    Full text link
    Retrieving relevant multimedia content is one of the main problems in a world that is increasingly data-driven. With the proliferation of drones, high quality aerial footage is now available to a wide audience for the first time. Integrating this footage into applications can enable GPS-less geo-localisation or location correction. In this paper, we present an orientation-guided training framework for UAV-view geo-localisation. Through hierarchical localisation orientations of the UAV images are estimated in relation to the satellite imagery. We propose a lightweight prediction module for these pseudo labels which predicts the orientation between the different views based on the contrastive learned embeddings. We experimentally demonstrate that this prediction supports the training and outperforms previous approaches. The extracted pseudo-labels also enable aligned rotation of the satellite image as augmentation to further strengthen the generalisation. During inference, we no longer need this orientation module, which means that no additional computations are required. We achieve state-of-the-art results on both the University-1652 and University-160k datasets
    • …
    corecore