2 research outputs found

    Revisiting of channel access mechanisms in mobile wireless networks through exploiting physical layer technologies

    No full text
    202012 bcrcVersion of RecordPublishe

    Revisiting of Channel Access Mechanisms in Mobile Wireless Networks through Exploiting Physical Layer Technologies

    No full text
    The wireless local area networks (WLANs) have been widely deployed with the rapid development of mobile devices and have further been brought into new applications with infrastructure mobility due to the growth of unmanned aerial vehicles (UAVs). However, the WLANs still face persistent challenge on increasing the network throughput to meet the customer’s requirement and fight against the node mobility. Interference is a well-known issue that would degrade the network performance due to the broadcast characteristics of the wireless signals. Moreover, with infrastructure mobility, the interference becomes the key obstacle in pursuing the channel capacity. Legacy interference management mechanism through the channel access control in the MAC layer design of the 802.11 standard has some well-known drawbacks, such as exposed and hidden terminal problems, inefficient rate adaptation, and retransmission schemes, making the efficient interference management an everlasting research topic over the years. Recently, interference management through exploiting physical layer mechanisms has attracted much research interest and has been proven to be a promising way to improve the network throughput, especially under the infrastructure mobility scenarios which provides more indicators for node dynamics. In this paper, we introduce a series of representative physical layer techniques and analyze how they are exploited for interference management to improve the network performance. We also provide some discussions about the research challenges and give potential future research topics in this area
    corecore