43 research outputs found

    Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow

    Full text link
    Stochastic control-flow models (SCFMs) are a class of generative models that involve branching on choices from discrete random variables. Amortized gradient-based learning of SCFMs is challenging as most approaches targeting discrete variables rely on their continuous relaxations---which can be intractable in SCFMs, as branching on relaxations requires evaluating all (exponentially many) branching paths. Tractable alternatives mainly combine REINFORCE with complex control-variate schemes to improve the variance of naive estimators. Here, we revisit the reweighted wake-sleep (RWS) (Bornschein and Bengio, 2015) algorithm, and through extensive evaluations, show that it outperforms current state-of-the-art methods in learning SCFMs. Further, in contrast to the importance weighted autoencoder, we observe that RWS learns better models and inference networks with increasing numbers of particles. Our results suggest that RWS is a competitive, often preferable, alternative for learning SCFMs.Comment: Tuan Anh Le and Adam R. Kosiorek contributed equally; accepted to Uncertainty in Artificial Intelligence 201

    Natural Evolution Strategies as a Black Box Estimator for Stochastic Variational Inference

    Full text link
    Stochastic variational inference and its derivatives in the form of variational autoencoders enjoy the ability to perform Bayesian inference on large datasets in an efficient manner. However, performing inference with a VAE requires a certain design choice (i.e. reparameterization trick) to allow unbiased and low variance gradient estimation, restricting the types of models that can be created. To overcome this challenge, an alternative estimator based on natural evolution strategies is proposed. This estimator does not make assumptions about the kind of distributions used, allowing for the creation of models that would otherwise not have been possible under the VAE framework

    Optimal Variance Control of the Score Function Gradient Estimator for Importance Weighted Bounds

    Full text link
    This paper introduces novel results for the score function gradient estimator of the importance weighted variational bound (IWAE). We prove that in the limit of large KK (number of importance samples) one can choose the control variate such that the Signal-to-Noise ratio (SNR) of the estimator grows as K\sqrt{K}. This is in contrast to the standard pathwise gradient estimator where the SNR decreases as 1/K1/\sqrt{K}. Based on our theoretical findings we develop a novel control variate that extends on VIMCO. Empirically, for the training of both continuous and discrete generative models, the proposed method yields superior variance reduction, resulting in an SNR for IWAE that increases with KK without relying on the reparameterization trick. The novel estimator is competitive with state-of-the-art reparameterization-free gradient estimators such as Reweighted Wake-Sleep (RWS) and the thermodynamic variational objective (TVO) when training generative models

    Amortised learning by wake-sleep

    Get PDF
    Models that employ latent variables to capture structure in observed data lie at the heart of many current unsupervised learning algorithms, but exact maximum-likelihood learning for powerful and flexible latent-variable models is almost always intractable. Thus, state-of-the-art approaches either abandon the maximum-likelihood framework entirely, or else rely on a variety of variational approximations to the posterior distribution over the latents. Here, we propose an alternative approach that we call amortised learning. Rather than computing an approximation to the posterior over latents, we use a wake-sleep Monte-Carlo strategy to learn a function that directly estimates the maximum-likelihood parameter updates. Amortised learning is possible whenever samples of latents and observations can be simulated from the generative model, treating the model as a “black box”. We demonstrate its effectiveness on a wide range of complex models, including those with latents that are discrete or supported on non-Euclidean spaces

    Nested Variational Inference

    Get PDF
    corecore