4 research outputs found

    Contextualizing Multiple Tasks via Learning to Decompose

    Full text link
    One single instance could possess multiple portraits and reveal diverse relationships with others according to different contexts. Those ambiguities increase the difficulty of learning a generalizable model when there exists one concept or mixed concepts in a task. We propose a general approach Learning to Decompose Network (LeadNet) for both two cases, which contextualizes a model through meta-learning multiple maps for concepts discovery -- the representations of instances are decomposed and adapted conditioned on the contexts. Through taking a holistic view over multiple latent components over instances in a sampled pseudo task, LeadNet learns to automatically select the right concept via incorporating those rich semantics inside and between objects. LeadNet demonstrates its superiority in various applications, including exploring multiple views of confusing tasks, out-of-distribution recognition, and few-shot image classification

    How to Train Your MAML to Excel in Few-Shot Classification

    Full text link
    Model-agnostic meta-learning (MAML) is arguably the most popular meta-learning algorithm nowadays, given its flexibility to incorporate various model architectures and to be applied to different problems. Nevertheless, its performance on few-shot classification is far behind many recent algorithms dedicated to the problem. In this paper, we point out several key facets of how to train MAML to excel in few-shot classification. First, we find that a large number of gradient steps are needed for the inner loop update, which contradicts the common usage of MAML for few-shot classification. Second, we find that MAML is sensitive to the permutation of class assignments in meta-testing: for a few-shot task of NN classes, there are exponentially many ways to assign the learned initialization of the NN-way classifier to the NN classes, leading to an unavoidably huge variance. Third, we investigate several ways for permutation invariance and find that learning a shared classifier initialization for all the classes performs the best. On benchmark datasets such as MiniImageNet and TieredImageNet, our approach, which we name UNICORN-MAML, performs on a par with or even outperforms state-of-the-art algorithms, while keeping the simplicity of MAML without adding any extra sub-networks

    Few-Shot Learning with a Strong Teacher

    Full text link
    Few-shot learning (FSL) aims to train a strong classifier using limited labeled examples. Many existing works take the meta-learning approach, sampling few-shot tasks in turn and optimizing the few-shot learner's performance on classifying the query examples. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with increasing shots (i.e., the number of training examples per class). To resolve these issues, we propose a novel objective to directly train the few-shot learner to perform like a strong classifier. Concretely, we associate each sampled few-shot task with a strong classifier, which is learned with ample labeled examples. The strong classifier has a better generalization ability and we use it to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach in combinations with many representative meta-learning methods. On several benchmark datasets including miniImageNet and tiredImageNet, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can consistently outperform non-meta-learning based ones, even in a many-shot setting, greatly strengthening their applicability
    corecore