2 research outputs found

    Revising Incompletely Specified Convex Probabilistic Belief Bases

    Get PDF
    We propose a method for an agent to revise its incomplete probabilistic beliefs when a new piece of propositional information is observed. In this work, an agent's beliefs are represented by a set of probabilistic formulae -- a belief base. The method involves determining a representative set of 'boundary' probability distributions consistent with the current belief base, revising each of these probability distributions and then translating the revised information into a new belief base. We use a version of Lewis Imaging as the revision operation. The correctness of the approach is proved. The expressivity of the belief bases under consideration are rather restricted, but has some applications. We also discuss methods of belief base revision employing the notion of optimum entropy, and point out some of the benefits and difficulties in those methods. Both the boundary distribution method and the optimum entropy method are reasonable, yet yield different results

    A Stochastic Belief Change Framework with an Observation Stream and Defaults as Expired Observations

    Get PDF
    Abstract. A framework for an agent to change its probabilistic beliefs after a stream of noisy observations is received is proposed. Observations which are no longer relevant, become default assumptions until overridden by newer, more prevalent observations. A distinction is made between background and foreground beliefs. Agent actions and environment events are distinguishable and form part of the agent model. It is left up to the agent designer to provide an environment model; a submodel of the agent model. An example of an environment model is provided in the paper, and an example scenario is based on it. Given the particular form of the agent model, several 'patterns of cognition' can be identified. An argument is made for four particular patterns
    corecore