619 research outputs found

    Reviewer Integration and Performance Measurement for Malware Detection

    Full text link
    We present and evaluate a large-scale malware detection system integrating machine learning with expert reviewers, treating reviewers as a limited labeling resource. We demonstrate that even in small numbers, reviewers can vastly improve the system's ability to keep pace with evolving threats. We conduct our evaluation on a sample of VirusTotal submissions spanning 2.5 years and containing 1.1 million binaries with 778GB of raw feature data. Without reviewer assistance, we achieve 72% detection at a 0.5% false positive rate, performing comparable to the best vendors on VirusTotal. Given a budget of 80 accurate reviews daily, we improve detection to 89% and are able to detect 42% of malicious binaries undetected upon initial submission to VirusTotal. Additionally, we identify a previously unnoticed temporal inconsistency in the labeling of training datasets. We compare the impact of training labels obtained at the same time training data is first seen with training labels obtained months later. We find that using training labels obtained well after samples appear, and thus unavailable in practice for current training data, inflates measured detection by almost 20 percentage points. We release our cluster-based implementation, as well as a list of all hashes in our evaluation and 3% of our entire dataset.Comment: 20 papers, 11 figures, accepted at the 13th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2016

    Eight years of rider measurement in the Android malware ecosystem: evolution and lessons learned

    Full text link
    Despite the growing threat posed by Android malware, the research community is still lacking a comprehensive view of common behaviors and trends exposed by malware families active on the platform. Without such view, the researchers incur the risk of developing systems that only detect outdated threats, missing the most recent ones. In this paper, we conduct the largest measurement of Android malware behavior to date, analyzing over 1.2 million malware samples that belong to 1.2K families over a period of eight years (from 2010 to 2017). We aim at understanding how the behavior of Android malware has evolved over time, focusing on repackaging malware. In this type of threats different innocuous apps are piggybacked with a malicious payload (rider), allowing inexpensive malware manufacturing. One of the main challenges posed when studying repackaged malware is slicing the app to split benign components apart from the malicious ones. To address this problem, we use differential analysis to isolate software components that are irrelevant to the campaign and study the behavior of malicious riders alone. Our analysis framework relies on collective repositories and recent advances on the systematization of intelligence extracted from multiple anti-virus vendors. We find that since its infancy in 2010, the Android malware ecosystem has changed significantly, both in the type of malicious activity performed by the malicious samples and in the level of obfuscation used by malware to avoid detection. We then show that our framework can aid analysts who attempt to study unknown malware families. Finally, we discuss what our findings mean for Android malware detection research, highlighting areas that need further attention by the research community.Accepted manuscrip

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Dos and Don'ts of Machine Learning in Computer Security

    Get PDF
    With the growing processing power of computing systems and the increasing availability of massive datasets, machine learning algorithms have led to major breakthroughs in many different areas. This development has influenced computer security, spawning a series of work on learning-based security systems, such as for malware detection, vulnerability discovery, and binary code analysis. Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance and render learning-based systems potentially unsuitable for security tasks and practical deployment. In this paper, we look at this problem with critical eyes. First, we identify common pitfalls in the design, implementation, and evaluation of learning-based security systems. We conduct a study of 30 papers from top-tier security conferences within the past 10 years, confirming that these pitfalls are widespread in the current security literature. In an empirical analysis, we further demonstrate how individual pitfalls can lead to unrealistic performance and interpretations, obstructing the understanding of the security problem at hand. As a remedy, we propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible. Furthermore, we identify open problems when applying machine learning in security and provide directions for further research.Comment: to appear at USENIX Security Symposium 202

    Air Force Institute of Technology Research Report 2011

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    • …
    corecore