173 research outputs found

    Master Index—Volumes 121–130

    Get PDF

    Author Index—Volume 130 (2001)

    Get PDF

    Cognitive science

    Get PDF

    Ontologies as Backbone of Cognitive Systems Engineering

    Get PDF
    Cognitive systems are starting to be deployed as appliances across the technological landscape of modern societies. The increasing availability of high performance computing platforms has opened an opportunity for statistics-based cognitive systems that perform quite as humans in certain tasks that resisted the symbolic methods of classic artificial intelligence. Cognitive artefacts appear every day in the media, raising a wave of mild fear concerning artificial intelligence and its impact on society. These systems, performance notwithstanding, are quite brittle and their reduced dependability limips their potential for massive deployment in mission-critical applications -e.g. in autonomous driving or medical diagnosis. In this paper we explore the actual possibility of building cognitive systems using engineering-grade methods that can assure the satisfaction of strict requirements for their operation. The final conclusion will be that, besides the potential improvement provided by a rigorous engineering process, we are still in need of a solid theory -possibly the main outcome of cognitive science- that could sustain such endeavour. In this sense, we propose the use of formal ontologies as backbones of cognitive systems engineering processes and workflows

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm
    • …
    corecore