2,167 research outputs found

    Review of Methods of Power-Spectrum Analysis as Applied to Super-Kamiokande Solar Neutrino Data

    Full text link
    To help understand why different published analyses of the Super-Kamiokande solar neutrino data arrive at different conclusions, we have applied six different methods to a standardized problem. The key difference between the various methods rests in the amount of information that each processes. A Lomb-Scargle analysis that uses the mid times of the time bins and ignores experimental error estimates uses the least information. A likelihood analysis that uses the start times, end times, and mean live times, and takes account of the experimental error estimates, makes the greatest use of the available information. We carry out power-spectrum analyses of the Super-Kamiokande 5-day solar neutrino data, using each method in turn, for a standard search band (0 to 50 yr-1). For each method, we also carry out a fixed number (10,000) of Monte-Carlo simulations for the purpose of estimating the significance of the leading peak in each power spectrum. We find that, with one exception, the results of these calculations are compatible with those of previously published analyses. (We are unable to replicate Koshio's recent results.) We find that the significance of the peaks at 9.43 yr-1 and at 43.72 yr-1 increases progressively as one incorporates more information into the analysis procedure.Comment: 21 pages, 25 figure

    Measurement of the ^8B solar neutrino flux with the KamLAND liquid scintillator detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from ^8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 ± 0.14(stat) ± 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a ^8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 ± 0.26(stat) ± 0.32(syst) ×10^6 cm^(−2_s^(−1). The analysis threshold is driven by ^(208)Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic ^(11)Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation

    Solar Neutrinos

    Get PDF
    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framemork more complete and stable, understanding the origin of some "anomalies" that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so called solar metallicity problem.Comment: 51 pages, to be published in Special Issue on Neutrino Physics, Advances in High Energy Physics Hindawi Publishing Corporation 201

    Neutrino oscillations

    Full text link
    In the last decades, a very important breakthrough has been brought in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has crossed this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future
    corecore