13,776 research outputs found

    Quantum Logic Gates and Nuclear Magnetic Resonance Pulse Sequences

    Full text link
    We demonstrate how NMR can in principle be used to implement all the elements required to build quantum computers, and briefly discuss the potential applications of insights from quantum logic to the development of novel pulse sequences with applications in more conventional NMR experiments.Comment: Sixteen pages, no figures. Submitted to Journal of Magnetic Resonance. Primarily pedagogical rather than a description of novel research result

    Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers

    Full text link
    Recent developments in engineering and algorithms have made real-world applications in quantum computing possible in the near future. Existing quantum programming languages and compilers use a quantum assembly language composed of 1- and 2-qubit (quantum bit) gates. Quantum compiler frameworks translate this quantum assembly to electric signals (called control pulses) that implement the specified computation on specific physical devices. However, there is a mismatch between the operations defined by the 1- and 2-qubit logical ISA and their underlying physical implementation, so the current practice of directly translating logical instructions into control pulses results in inefficient, high-latency programs. To address this inefficiency, we propose a universal quantum compilation methodology that aggregates multiple logical operations into larger units that manipulate up to 10 qubits at a time. Our methodology then optimizes these aggregates by (1) finding commutative intermediate operations that result in more efficient schedules and (2) creating custom control pulses optimized for the aggregate (instead of individual 1- and 2-qubit operations). Compared to the standard gate-based compilation, the proposed approach realizes a deeper vertical integration of high-level quantum software and low-level, physical quantum hardware. We evaluate our approach on important near-term quantum applications on simulations of superconducting quantum architectures. Our proposed approach provides a mean speedup of 5×5\times, with a maximum of 10×10\times. Because latency directly affects the feasibility of quantum computation, our results not only improve performance but also have the potential to enable quantum computation sooner than otherwise possible.Comment: 13 pages, to apper in ASPLO

    Introduction to Quantum Information Processing

    Full text link
    As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developing new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at http://www.c3.lanl.gov/~knill/qip/prhtm
    • …
    corecore