5,577 research outputs found
Effect of Sodium Ions on the Electrochemical Reduction of Diethyl Fumarate in Dimethylsulfoxide and Acetonitrile
Alkenylation and Allylation of Aldehydes by Using an Ni/Cr/TDAE Redox System
In 360 females, Bone mineral density (BMD) in lumbar vertebrae (L2-L4) was assessed by quantitative computed tomography (QCT), and the values obtained were compared with the frequency of vertebral transformation or
fracture as assessed by lateral scan image (scanogram) by X-ray CT. A correlation was observed between the frequency of vertebral transformation (or fracture) and lumbar BMD values : BMD under 125 mg/cm(3) was observed over 90% of women with vertebral transformation, and BMD under 70mg/cm(3) was found about 50% of them. These results suggest that decrease in BMD in lumbar vertebrae leads to vertebral transformation or fracture. Thus, measurement of BMD by QCT would be very useful in predicting vertebral
transformation or fractures
Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode
Anionic redox reaction (ARR) in lithium- and sodium-ion batteries is under hot discussion, mainly regarding how oxygen anion participates and to what extent oxygen can be reversibly oxidized and reduced. Here, a P3-type Na0.6[Li0.2Mn0.8]O2 with reversible capacity from pure ARR was studied. The interlayer O-O distance (peroxo-like O-O dimer, 2.506(3) Å), associated with oxidization of oxygen anions, was directly detected by using a neutron total scattering technique. Different from Li2RuO3 or Li2IrO3 with strong metal-oxygen (M-O) bonding, for P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors might play an even more important role in stabilizing the oxidized species, as both Li and Mn ions are immobile in the structure and thus may inhibit the irreversible transformation of the oxidized species to O2 gas. Utilization of anionic redox reaction (ARR) on oxygen has been considered as an effective way to promote the charge-discharge capacity of the layered oxide cathodes for lithium- or sodium-ion batteries. The detailed mechanism of ARR, in particular how crystal structure affects and coordinates with the ARR, is not yet well understood. In the present work, a combination of X-ray and neutron total scattering measurements has been performed to study the structure of the prototype P3-type layered Na0.6[Li0.2Mn0.8]O2 with pure ARR. Unique structural characteristics, rather than prevailing knowledge of covalency of metal-oxygen, enable the stabilization of the crystal structure of Na0.6[Li0.2Mn0.8]O2 along with the ARR. This work suggests that reversible ARR can be manipulated by proper structure designs, thus to achieve high lithium or sodium storage in layered oxide cathodes. For P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors play an important role in stabilizing the oxidized species, inhibiting the irreversible transformation of the oxidized species to O2 gas. The finding is important for better design of layered oxide positive materials with higher reversible capacity via the introduction of a reversible anionic redox reaction
Electrochemistry of ferrocenylphosphines FcCH₂PR₂ (Fc=(η⁵-C₅H₅)Fe(η⁵-C₅H₄); R=Ph, CH₂OH and CH₂CH₂CN), and some phosphine oxide, phosphine sulfide, phosphonium and metal complex derivatives
Electrochemical studies of the free ferrocenylphosphine ligands FcCH₂PR₂ (Fc=(η⁵-C₅H₅)Fe(η⁵-C₅H₄); R=Ph, CH₂OH and CH₂CH₂CN) and some phosphine oxide, phosphine sulfide, phosphonium and metal derivatives are described. The free ligands exhibit complex voltammetric responses due to participation of the phosphorus lone pair in the redox reactions. Uncomplicated ferrocene-based redox chemistry is observed for PV derivatives and when the ligands are coordinated in complexes cis-PtCl₂[FcCH₂P(CH₂OH)₂], PdCl₂[FcCH₂P(CH₂OH)₂], [Au{FcCH₂P(CH₂OH)₂}₂]Cl, RuCl₂(η⁶-C₁₀H₁₄)[FcCH₂P(CH₂OH)₂] and RuCl₂(η⁶-C₁₀H₁₄)(FcCH₂PPh₂). The reaction pathways of the free ligands after one-electron oxidation have been examined in detail using voltammetry, NMR spectroscopy and electrospray mass spectrometry. Direct evidence for formation of a P---P bonded product is presented
Cymantrene–Triazole "Click" Products: Structural Characterization and Electrochemical Properties
We report the first known examples of triazole-derivatized cymantrene complexes (η5-[4-substituted triazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I), obtained via a “click” chemical synthesis, bearing a phenyl, 3-aminophenyl, or 4-aminophenyl moiety at the 4-position of the triazole ring. Structural characterization data using multinuclear NMR, UV–vis, ATR-IR, and mass spectrometric methods are provided, as well as crystallographic data for (η5-[4-phenyltriazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I) and (η5-[4-(3-aminophenyl)triazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I). Cyclic voltammetric characterization of the redox behavior of each of the three cymantrene–triazole complexes is presented together with digital simulations, in situ infrared spectroelectrochemistry, and DFT calculations to extract the associated kinetic and thermodynamic parameters. The trypanocidal activity of each cymantrene–triazole complex is also examined, and these complexes are found to be more active than cymantrene alone
Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids
The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.This work has been partially financed by Generalitat Valenciana through Ayudas para la realización de proyectos de I+D para grupos de investigación emergentes (GV/2014/096) and by the MICINN (project CTQ2013-48280-C3-3-R)
- …
