17,411 research outputs found
Resonator-induced dissipation of transverse nuclear-spin signals in cold nanoscale samples
The back action of typical macroscopic resonators used for detecting nuclear magnetic resonance can cause a reversible decay of the signal, known as radiation damping. A mechanical resonator that is strongly coupled to a microscopic sample can in addition induce an irreversible dissipation of the nuclear-spin signal, distinct from radiation damping. We provide a theoretical description of resonator-induced transverse relaxation that is valid for samples of a few nuclear spins in the low-temperature regime, where quantum fluctuations play a significant role in the relaxation process, as well as for larger samples and at higher temperatures. Transverse relaxation during free evolution and during spin locking are analyzed, and simulations of relaxation in example systems are presented. In the case where an isolated spin 1/2 interacts with the resonator, transverse relaxation is exponential during free evolution, and the time constant for the relaxation is T_2=2/R_h, where R_h is the rate constant governing the exchange of quanta between the resonator and the spin. For a system of multiple spins, the time scale of transverse relaxation during free evolution depends on the spin Hamiltonian, which can modify the relaxation process through the following effects: (1) changes in the structure of the spin-spin correlations present in the energy eigenstates, which affect the rates at which these states emit and absorb energy, (2) frequency shifts that modify emission and absorption rates within a degenerate manifold by splitting the energy degeneracy and thus suppressing the development of resonator-induced correlations within the manifold, and (3) frequency shifts that introduce a difference between the oscillation frequencies of single-quantum coherences ρ_(ab) and ρ_(cd) and average to zero the transfers between them. This averaging guarantees that the spin transitions responsible for the coupling between ρ_(ab) and ρ_(cd) cause irreversible loss of order rather than a reversible interconversion of the coherences. In systems of a few spins, transverse relaxation is accelerated by a dipolar Hamiltonian that is either the dominant term in the internal spin Hamiltonian or a weak perturbation to the chemical-shift Hamiltonian. A pure chemical-shift Hamiltonian yields exponential relaxation with T_2=2/R_h in the case where the Larmor frequencies of the spins are distinct and sufficiently widely spaced. During spin locking with a nutation frequency fast enough to average the evolution under the internal spin Hamiltonian but not the interactions occurring during the correlation time of the resonator, relaxation of the spin-locked component is exponential with time constant T_(1ρ)=2/R_h
Multiresponsive chromic soft materials: formation of macrocycles from carbazole-based biradicaloids
-conjugated biradical compounds become essential building blocks in DCC (dynamic covalent chemistry).1 This field is based on the creation of structural scaffolds based on chemical components which interact through strong but reversible bonds. Importantly, dynamic covalent bonds will be at the center of attention because of their unique feature to become reversible under mild conditions.2 Recently, we have demonstrated the reversible interconversion between a stable quinoid precursor based on a para-substituted carbazole with terminal dicyanomethylene groups and a macrocycle cyclophane upon soft external stimuli (temperature, pressure, light), which results on strong chromic features.3 In this work, we investigate the interconversion of the monomer/cyclophane transformation in carbazole-based systems, both in solution and solid state, upon external stimuli. To this end, we use a combined experimental and theoretical study that links vibrational spectroscopy (Raman and IR) with DFT calculations.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
STUDIES ON PLANT BILE PIGMENTS-6. PHOTOCHEMICALLY ASSISTED REACTION OF A-DIHYDROBILINDIONE WITH NUCLEOPHILES AS A MODEL FOR PHYTOCHROME INTERCONVERSION
From the A-dihydrobilindione 3. the pyridinium derivatives 6a,b and analogues thereof have
been obtained by a formal nucleophilic substitution. The reaction is rationalized as a photochemically
assisted oxidation of 3 with a subsequent regioselective addition of pyridine at C-5. By thermolysis.
6a.b yields back the parent bilin 3, together with an oxidation product. The significance of the reaction
with respect to the phytochrome interconversion is discussed
Reversible low-light induced photoswitching of crowned spiropyran-DO3A complexed with gadolinium(III) ions.
Photoswitchable spiropyran has been conjugated to the crowned ring system DO3A, which improves its solubility in dipolar and polar media and stabilizes the merocyanine isomer. Adding the lanthanide ion gadolinium(III) to the macrocyclic ring system leads to a photoresponsive magnetic resonance imaging contrast agent that displays an increased spin-lattice relaxation time (T₁) upon visible light stimulation. In this work, the photoresponse of this photochromic molecule to weak light illumination using blue and green light emitting diodes was investigated, simulating the emission spectra from bioluminescent enzymes. Photon emission rate of the light emitting diodes was changed, from 1.75 × 10¹⁶ photons·s⁻¹ to 2.37 × 10¹² photons·s⁻¹. We observed a consistent visible light-induced isomerization of the merocyanine to the spiropyran form with photon fluxes as low as 2.37 × 10¹² photons·s⁻¹ resulting in a relaxivity change of the compound. This demonstrates the potential for use of the described imaging probes in low light level applications such as sensing bioluminescence enzyme activity. The isomerization behavior of gadolinium(III)-ion complexed and non-complexed spiropyran-DO3A was analyzed in water and ethanol solution in response to low light illumination and compared to the emitted photon emission rate from over-expressed Gaussia princeps luciferase
The resource theory of quantum reference frames: manipulations and monotones
Every restriction on quantum operations defines a resource theory,
determining how quantum states that cannot be prepared under the restriction
may be manipulated and used to circumvent the restriction. A superselection
rule is a restriction that arises through the lack of a classical reference
frame and the states that circumvent it (the resource) are quantum reference
frames. We consider the resource theories that arise from three types of
superselection rule, associated respectively with lacking: (i) a phase
reference, (ii) a frame for chirality, and (iii) a frame for spatial
orientation. Focussing on pure unipartite quantum states (and in some cases
restricting our attention even further to subsets of these), we explore
single-copy and asymptotic manipulations. In particular, we identify the
necessary and sufficient conditions for a deterministic transformation between
two resource states to be possible and, when these conditions are not met, the
maximum probability with which the transformation can be achieved. We also
determine when a particular transformation can be achieved reversibly in the
limit of arbitrarily many copies and find the maximum rate of conversion. A
comparison of the three resource theories demonstrates that the extent to which
resources can be interconverted decreases as the strength of the restriction
increases. Along the way, we introduce several measures of frameness and prove
that these are monotonically nonincreasing under various classes of operations
that are permitted by the superselection rule.Comment: 37 pages, 4 figures, Published Versio
Interconversion of Nonlocal Correlations
In this paper we study the correlations that arise when two separated parties
perform measurements on systems they hold locally. We restrict ourselves to
those correlations with which arbitrarily fast transmission of information is
impossible. These correlations are called nonsignaling. We allow the
measurements to be chosen from sets of an arbitrary size, but promise that each
measurement has only two possible outcomes. We find the structure of this
convex set of nonsignaling correlations by characterizing its extreme points.
Taking an information-theoretic view, we prove that all of these extreme
correlations are interconvertible. This suggests that the simplest extremal
nonlocal distribution (called a PR box) might be the basic unit of nonlocality.
We also show that this unit of nonlocality is sufficient to simulate all
quantum states when measured with two outcome measurements.Comment: 7 pages + appendix, single colum
- …
