4 research outputs found

    Reverse k nearest neighbors queries and spatial reverse top-k queries

    Full text link
    © 2016, Springer-Verlag Berlin Heidelberg. Given a set of facilities and a set of users, a reverse k nearest neighbors (RkNN) query q returns every user for which the query facility is one of the k closest facilities. Almost all of the existing techniques to answer RkNN queries adopt a pruning-and-verification framework. Regions-based pruning and half-space pruning are the two most notable pruning strategies. The half-space-based approach prunes a larger area and is generally believed to be superior. Influenced by this perception, almost all existing RkNN algorithms utilize and improve the half-space pruning strategy. We observe the weaknesses and strengths of both strategies and discover that the regions-based pruning has certain strengths that have not been exploited in the past. Motivated by this, we present a new regions-based pruning algorithm called Slice that utilizes the strength of regions-based pruning and overcomes its limitations. We also study spatial reverse top-k (SRTk) queries that return every user u for which the query facility is one of the top-k facilities according to a given linear scoring function. We first extend half-space-based pruning to answer SRTk queries. Then, we propose a novel regions-based pruning algorithm following Slice framework to solve the problem. Our extensive experimental study on synthetic and real data sets demonstrates that Slice is significantly more efficient than all existing RkNN and SRTk algorithms

    Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things

    Get PDF
    In a typical Internet of Things (IoT) deployment such as smart cities and Industry 4.0, the amount of sensory data collected from physical world is significant and wide-ranging. Processing large amount of real-time data from the diverse IoT devices is challenging. For example, in IoT environment, wireless sensor networks (WSN) are typically used for the monitoring and collecting of data in some geographic area. Spatial range queries with location constraints to facilitate data indexing are traditionally employed in such applications, which allows the querying and managing the data based on SQL structure. One particular challenge is to minimize communication cost and storage requirements in multi-dimensional data indexing approaches. In this paper, we present an energy- and time-efficient multidimensional data indexing scheme, which is designed to answer range query. Specifically, we propose data indexing methods which utilize hierarchical indexing structures, using binary space partitioning (BSP), such as kd-tree, quad-tree, k-means clustering, and Voronoi-based methods to provide more efficient routing with less latency. Simulation results demonstrate that the Voronoi Diagram-based algorithm minimizes the average energy consumption and query response time
    corecore