4 research outputs found

    Broadband PureGaB Ge-on-Si photodiodes responsive in the ultraviolet to near-infrared range

    Get PDF
    Optical characterization of PureGaB germanium-on-silicon (Ge-on-Si) photodiodes was performed for wavelengths between 255 nm and 1550 nm. In PureGaB technology, chemical vapor deposition is used to grow germanium islands in oxide windows to the silicon substrate and then cap them in-situ with nm-thin layers of first gallium and then boron, thus forming nm-shallow p+n diodes. These PureGaB Ge-on-Si photodiodes are CMOS compatible and characterized by low leakage currents. Here they are shown to have high responsivity in the whole ultraviolet (UV) to near infrared (NIR) wavelength range. Particularly, two sets of diodes were studied with respect to possible detrimental effects of the Al metallization/alloying process steps on the responsivity. Al-mediated transport of the Ge and underlying Si was observed if the PureGaB layer, which forms a barrier to metal layers, did not cover all surfaces of the Ge islands. A simulation study was performed confirming that the presence of acceptor traps at the Ge/Si interface could decrease the otherwise high theoretically attainable responsivity of PureGaB Ge-on-Si photodiodes in the whole UV to NIR range. A modification of the device structure is proposed where the PureGaB layer covers not only the top surface of the Ge-islands, but also the sidewalls. It was found that to mitigate premature breakdown, it would be necessary to add p-doped guard rings in Si around the perimeter of Ge islands, but this PureGaB-all-around structure would not compromise the optical performance.</p

    Π›Π°Π²ΠΈΠ½Π½Ρ‹Π΅ свСтодиоды Π½Π° основС наноструктурированного крСмния для оптичСских мСТсоСдинСний

    Get PDF
    The paper analyzes the parameters of silicon avalanche LEDs and their use for electron-optical signal transmission systems. The advantages of silicon avalanche LEDs are shown, among which high speed and compatibility with silicon technology should be highlighted. Experimental avalanche LEDs based on nanostructured silicon were fabricated and studied. The results of controlling the electroluminescence spectrum of avalanche LEDs due to the choice of production conditions to form nanostructured silicon are presented. It was found that the temperature of the substrate during the deposition of the surface nanocomposite aluminum + silicon film affected the size of the formed silicon nanoparticles determining the spectral characteristics of avalanche LEDs. This allows shifting the maximum of their emission spectrum to a shorter wavelength region of the visible range due to the forming of smaller silicon nanoparticles. The authors have developed an optical interconnection system consisting of avalanche LEDs based on nanostructured silicon and a microchannel silicon wafer used to transmit a light signal. The study of various operating modes of the developed optoelectronic system was performed and an increase in the efficiency of optocouple based on avalanche LEDs to 0.2% due to the pulsed operating mode was achieved. It is shown that the efficiency of the optocouple increases with LED current and it is the pulsed mode of its operation that is characterized by the maximum current, which is due to more efficient removal of Joule heat in the intervals between pulses, ensuring stable operation of the entire system. The results obtained open up new opportunities for the development of optical interconnections between silicon chips and silicon optoelectronics in general.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов ΠΈ ΠΈΡ… использования для элСктронно-оптичСских систСм ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигналов. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ², срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… слСдуСт Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ высокоС быстродСйствиС ΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒ с ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ. Π˜Π·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов Π½Π° основС наноструктурированного крСмния ΠΈ исслСдованы ΠΈΡ… структурныС ΠΈ оптичСскиС характСристики. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ управлСния спСктром ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов Π·Π° счСт Π²Ρ‹Π±ΠΎΡ€Π° тСхнологичСских Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² формирования наноструктурированного крСмния. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ Π² процСссС осаТдСния повСрхностной Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ алюминий + ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ влияСт Π½Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… наночастиц, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ характСристики Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов. Π­Ρ‚ΠΎ позволяСт ΡΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ максимум спСктра ΠΈΡ… излучСния Π² Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π·Π° счСт формирования ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… наночастиц ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° систСма оптичСских мСТсоСдинСний, состоящая ΠΈΠ· Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов Π½Π° основС наноструктурированного крСмния ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ пластины, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ свСтового сигнала. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² функционирования Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ оптоэлСктронной систСмы ΠΈ достигнуто ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ эффСктивности ΠΎΠΏΡ‚ΠΎΠΏΠ°Ρ€Ρ‹ Π½Π° основС Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… свСтодиодов Π΄ΠΎ 0,2 % Π·Π° счСт ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° функционирования. Показано, Ρ‡Ρ‚ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΡ‚ΠΎΠΏΠ°Ρ€Ρ‹ увСличиваСтся ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚ΠΎΠΊΠ° свСтодиода, ΠΈ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹ характСризуСтся ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠΊΠ°, Ρ‡Ρ‚ΠΎ обусловлСно Π±ΠΎΠ»Π΅Π΅ эффСктивным ΠΎΡ‚Π²ΠΎΠ΄ΠΎΠΌ Π΄ΠΆΠΎΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»Π° Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°Ρ… ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ всСй систСмы. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ возмоТности для развития оптичСских мСТсоСдинСний ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹ΠΌΠΈ Ρ‡ΠΈΠΏΠ°ΠΌΠΈ ΠΈ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ оптоэлСктроники Π² Ρ†Π΅Π»ΠΎΠΌ

    Reverse breakdown and light-emission patterns studied in Si PureB SPADs

    No full text
    The relationship between light-emission patterns from silicon avalanche-mode light-emitting diodes (AMLEDs), and avalanche breakdown was investigated using photodiodes fabricated in pure boron (PureB) technology. The quality of the diodes ranged from high-quality, low dark-current devices with abrupt breakdown characteristics that were suitable for operation as single-photon avalanche diodes (SPADs), to diodes with gradually increasing reverse currents before actual breakdown. The reverse I-V characteristics were measured and correlated to light-emission data obtained simultaneously using a PureB photodetector, and inspected using a camera with which distinct emission patterns could be identified. When increasing the voltage far past breakdown, light emission invariably becomes dominant at the photodiode periphery. Based on the examination of a large variety of anode geometries, it is concluded that the most efficient light emission per consumed power is achieved with defect-free narrow-anode diodes that also are applicable as low-dark-count-rate SPADs
    corecore