12,413 research outputs found

    Malware detection techniques for mobile devices

    Full text link
    Mobile devices have become very popular nowadays, due to its portability and high performance, a mobile device became a must device for persons using information and communication technologies. In addition to hardware rapid evolution, mobile applications are also increasing in their complexity and performance to cover most needs of their users. Both software and hardware design focused on increasing performance and the working hours of a mobile device. Different mobile operating systems are being used today with different platforms and different market shares. Like all information systems, mobile systems are prone to malware attacks. Due to the personality feature of mobile devices, malware detection is very important and is a must tool in each device to protect private data and mitigate attacks. In this paper, analysis of different malware detection techniques used for mobile operating systems is provides. The focus of the analysis will be on the to two competing mobile operating systems - Android and iOS. Finally, an assessment of each technique and a summary of its advantages and disadvantages is provided. The aim of the work is to establish a basis for developing a mobile malware detection tool based on user profiling.Comment: 11 pages, 6 figure

    MagicPairing: Apple's Take on Securing Bluetooth Peripherals

    Full text link
    Device pairing in large Internet of Things (IoT) deployments is a challenge for device manufacturers and users. Bluetooth offers a comparably smooth trust on first use pairing experience. Bluetooth, though, is well-known for security flaws in the pairing process. In this paper, we analyze how Apple improves the security of Bluetooth pairing while still maintaining its usability and specification compliance. The proprietary protocol that resides on top of Bluetooth is called MagicPairing. It enables the user to pair a device once with Apple's ecosystem and then seamlessly use it with all their other Apple devices. We analyze both, the security properties provided by this protocol, as well as its implementations. In general, MagicPairing could be adapted by other IoT vendors to improve Bluetooth security. Even though the overall protocol is well-designed, we identified multiple vulnerabilities within Apple's implementations with over-the-air and in-process fuzzing

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    A look into the information your smartphone leaks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Some smartphone applications (apps) pose a risk to users’ personal information. Events of apps leaking information stored in smartphones illustrate the danger that they present. In this paper, we investigate the amount of personal information leaked during the installation and use of apps when accessing the Internet. We have opted for the implementation of a Man-in-the-Middle proxy to intercept the network traffic generated by 20 popular free apps installed on different smartphones of distinctive vendors. This work describes the technical considerations and requirements for the deployment of the monitoring WiFi network employed during the conducted experiments. The presented results show that numerous mobile and personal unique identifiers, along with personal information are leaked by several of the evaluated apps, commonly during the installation process

    InternalBlue - Bluetooth Binary Patching and Experimentation Framework

    Full text link
    Bluetooth is one of the most established technologies for short range digital wireless data transmission. With the advent of wearables and the Internet of Things (IoT), Bluetooth has again gained importance, which makes security research and protocol optimizations imperative. Surprisingly, there is a lack of openly available tools and experimental platforms to scrutinize Bluetooth. In particular, system aspects and close to hardware protocol layers are mostly uncovered. We reverse engineer multiple Broadcom Bluetooth chipsets that are widespread in off-the-shelf devices. Thus, we offer deep insights into the internal architecture of a popular commercial family of Bluetooth controllers used in smartphones, wearables, and IoT platforms. Reverse engineered functions can then be altered with our InternalBlue Python framework---outperforming evaluation kits, which are limited to documented and vendor-defined functions. The modified Bluetooth stack remains fully functional and high-performance. Hence, it provides a portable low-cost research platform. InternalBlue is a versatile framework and we demonstrate its abilities by implementing tests and demos for known Bluetooth vulnerabilities. Moreover, we discover a novel critical security issue affecting a large selection of Broadcom chipsets that allows executing code within the attacked Bluetooth firmware. We further show how to use our framework to fix bugs in chipsets out of vendor support and how to add new security features to Bluetooth firmware

    Web API Fragility: How Robust is Your Web API Client

    Full text link
    Web APIs provide a systematic and extensible approach for application-to-application interaction. A large number of mobile applications makes use of web APIs to integrate services into apps. Each Web API's evolution pace is determined by their respective developer and mobile application developers are forced to accompany the API providers in their software evolution tasks. In this paper we investigate whether mobile application developers understand and how they deal with the added distress of web APIs evolving. In particular, we studied how robust 48 high profile mobile applications are when dealing with mutated web API responses. Additionally, we interviewed three mobile application developers to better understand their choices and trade-offs regarding web API integration.Comment: Technical repor

    Internet of Things Cloud: Architecture and Implementation

    Full text link
    The Internet of Things (IoT), which enables common objects to be intelligent and interactive, is considered the next evolution of the Internet. Its pervasiveness and abilities to collect and analyze data which can be converted into information have motivated a plethora of IoT applications. For the successful deployment and management of these applications, cloud computing techniques are indispensable since they provide high computational capabilities as well as large storage capacity. This paper aims at providing insights about the architecture, implementation and performance of the IoT cloud. Several potential application scenarios of IoT cloud are studied, and an architecture is discussed regarding the functionality of each component. Moreover, the implementation details of the IoT cloud are presented along with the services that it offers. The main contributions of this paper lie in the combination of the Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) servers to offer IoT services in the architecture of the IoT cloud with various techniques to guarantee high performance. Finally, experimental results are given in order to demonstrate the service capabilities of the IoT cloud under certain conditions.Comment: 19pages, 4figures, IEEE Communications Magazin

    DEMO: Attaching InternalBlue to the Proprietary macOS IOBluetooth Framework

    Full text link
    In this demo, we provide an overview of the macOS Bluetooth stack internals and gain access to undocumented low-level interfaces. We leverage this knowledge to add macOS support to the InternalBlue firmware modification and wireless experimentation framework.Comment: 13th ACM Conference on Security and Privacy in Wireless and Mobile Network

    Inside Job: Diagnosing Bluetooth Lower Layers Using Off-the-Shelf Devices

    Full text link
    Bluetooth is among the dominant standards for wireless short-range communication with multi-billion Bluetooth devices shipped each year. Basic Bluetooth analysis inside consumer hardware such as smartphones can be accomplished observing the Host Controller Interface (HCI) between the operating system's driver and the Bluetooth chip. However, the HCI does not provide insights to tasks running inside a Bluetooth chip or Link Layer (LL) packets exchanged over the air. As of today, consumer hardware internal behavior can only be observed with external, and often expensive tools, that need to be present during initial device pairing. In this paper, we leverage standard smartphones for on-device Bluetooth analysis and reverse engineer a diagnostic protocol that resides inside Broadcom chips. Diagnostic features include sniffing lower layers such as LL for Classic Bluetooth and Bluetooth Low Energy (BLE), transmission and reception statistics, test mode, and memory peek and poke
    • …
    corecore