199,051 research outputs found

    State Complexity of Reversals of Deterministic Finite Automata with Output

    Full text link
    We investigate the worst-case state complexity of reversals of deterministic finite automata with output (DFAOs). In these automata, each state is assigned some output value, rather than simply being labelled final or non-final. This directly generalizes the well-studied problem of determining the worst-case state complexity of reversals of ordinary deterministic finite automata. If a DFAO has nn states and kk possible output values, there is a known upper bound of knk^n for the state complexity of reversal. We show this bound can be reached with a ternary input alphabet. We conjecture it cannot be reached with a binary input alphabet except when k=2k = 2, and give a lower bound for the case 3k<n3 \le k < n. We prove that the state complexity of reversal depends solely on the transition monoid of the DFAO and the mapping that assigns output values to states.Comment: 18 pages, 3 tables. Added missing affiliation/funding informatio

    State Complexity of Catenation Combined with Star and Reversal

    Full text link
    This paper is a continuation of our research work on state complexity of combined operations. Motivated by applications, we study the state complexities of two particular combined operations: catenation combined with star and catenation combined with reversal. We show that the state complexities of both of these combined operations are considerably less than the compositions of the state complexities of their individual participating operations.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Syntactic Complexity of R- and J-Trivial Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of R- and J-trivial regular languages, and prove that n! and floor of [e(n-1)!] are tight upper bounds for these languages, respectively. We also prove that 2^{n-1} is the tight upper bound on the state complexity of reversal of J-trivial regular languages.Comment: 17 pages, 5 figures, 1 tabl

    Most Complex Non-Returning Regular Languages

    Get PDF
    A regular language LL is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each n4n\ge 4 there exists a ternary witness of state complexity nn that meets the bound for reversal and that at least three letters are needed to meet this bound. Moreover, the restrictions of this witness to binary alphabets meet the bounds for product, star, and boolean operations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has (n1)n(n-1)^n elements and requires at least (n2)\binom{n}{2} generators. We find the maximal state complexities of atoms of non-returning languages. Finally, we show that there exists a most complex non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669
    corecore