4,429 research outputs found

    Learning to bid in revenue-maximizing auctions

    Full text link
    We consider the problem of the optimization of bidding strategies in prior-dependent revenue-maximizing auctions, when the seller fixes the reserve prices based on the bid distributions. Our study is done in the setting where one bidder is strategic. Using a variational approach, we study the complexity of the original objective and we introduce a relaxation of the objective functional in order to use gradient descent methods. Our approach is simple, general and can be applied to various value distributions and revenue-maximizing mechanisms. The new strategies we derive yield massive uplifts compared to the traditional truthfully bidding strategy

    A Game-theoretic Machine Learning Approach for Revenue Maximization in Sponsored Search

    Full text link
    Sponsored search is an important monetization channel for search engines, in which an auction mechanism is used to select the ads shown to users and determine the prices charged from advertisers. There have been several pieces of work in the literature that investigate how to design an auction mechanism in order to optimize the revenue of the search engine. However, due to some unrealistic assumptions used, the practical values of these studies are not very clear. In this paper, we propose a novel \emph{game-theoretic machine learning} approach, which naturally combines machine learning and game theory, and learns the auction mechanism using a bilevel optimization framework. In particular, we first learn a Markov model from historical data to describe how advertisers change their bids in response to an auction mechanism, and then for any given auction mechanism, we use the learnt model to predict its corresponding future bid sequences. Next we learn the auction mechanism through empirical revenue maximization on the predicted bid sequences. We show that the empirical revenue will converge when the prediction period approaches infinity, and a Genetic Programming algorithm can effectively optimize this empirical revenue. Our experiments indicate that the proposed approach is able to produce a much more effective auction mechanism than several baselines.Comment: Twenty-third International Conference on Artificial Intelligence (IJCAI 2013

    Optimising Trade-offs Among Stakeholders in Ad Auctions

    Full text link
    We examine trade-offs among stakeholders in ad auctions. Our metrics are the revenue for the utility of the auctioneer, the number of clicks for the utility of the users and the welfare for the utility of the advertisers. We show how to optimize linear combinations of the stakeholder utilities, showing that these can be tackled through a GSP auction with a per-click reserve price. We then examine constrained optimization of stakeholder utilities. We use simulations and analysis of real-world sponsored search auction data to demonstrate the feasible trade-offs, examining the effect of changing the allowed number of ads on the utilities of the stakeholders. We investigate both short term effects, when the players do not have the time to modify their behavior, and long term equilibrium conditions. Finally, we examine a combinatorially richer constrained optimization problem, where there are several possible allowed configurations (templates) of ad formats. This model captures richer ad formats, which allow using the available screen real estate in various ways. We show that two natural generalizations of the GSP auction rules to this domain are poorly behaved, resulting in not having a symmetric Nash equilibrium or having one with poor welfare. We also provide positive results for restricted cases.Comment: 18 pages, 10 figures, ACM Conference on Economics and Computation 201

    Generalized Second Price Auction with Probabilistic Broad Match

    Full text link
    Generalized Second Price (GSP) auctions are widely used by search engines today to sell their ad slots. Most search engines have supported broad match between queries and bid keywords when executing GSP auctions, however, it has been revealed that GSP auction with the standard broad-match mechanism they are currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g., its theoretical properties are known only for the single-slot case and full-information setting, and even in this simple setting, the corresponding worst-case social welfare can be rather bad). To address this issue, we propose a novel broad-match mechanism, which we call the Probabilistic Broad-Match (PBM) mechanism. Different from SBM that puts together the ads bidding on all the keywords matched to a given query for the GSP auction, the GSP with PBM (denoted as PBM-GSP) randomly samples a keyword according to a predefined probability distribution and only runs the GSP auction for the ads bidding on this sampled keyword. We perform a comprehensive study on the theoretical properties of the PBM-GSP. Specifically, we study its social welfare in the worst equilibrium, in both full-information and Bayesian settings. The results show that PBM-GSP can generate larger welfare than SBM-GSP under mild conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in Bayesian setting. To the best of our knowledge, this is the first work on broad-match mechanisms for GSP that goes beyond the single-slot case and the full-information setting
    • …
    corecore