2,994 research outputs found
Transthyretin is a metallopeptidase with an inducible active site
TTR (transthyretin) was found recently to possess proteolytic competency besides its well-known transport capabilities. It was described as a cryptic serine peptidase cleaving multiple natural substrates (including beta-amyloid and apolipoprotein A-I) involved in diseases such as Alzheimer's disease and atherosclerosis. in the present study, we aimed to elucidate the catalytic machinery of TTR. All attempts to identify a catalytic serine residue were unsuccessful. However, metal chelators abolished TTR activity. Proteolytic inhibition by EDTA or 1,10-phenanthroline could be reversed with Zn2+ and Mn2+. These observations, supported by analysis of three-dimensional structures of TTR complexed with Zn2+, led to the hypothesis that TTR is a metallopeptidase. Site-directed mutagenesis of selected amino acids unambiguously confirmed this hypothesis. the TTR active site is inducible and constituted via a protein rearrangement resulting in similar to 7% of proteolytically active TTR at pH 7.4. the side chain of His(88) is shifted near His(90) and Gin(92) establishing a Zn2+-chelating pattern HXHXE not found previously in any metallopeptidase and only conserved in TTR of humans and some other primates. Point mutations of these three residues yielded proteins devoid of proteolytic activity. Glu(72) was identified as the general base involved in activation of the catalytic water. Our results unveil TTR as a metallopeptidase and define its catalytic machinery.Fundacao para a Ciencia e Tecnologia (FCT)Association Francaise contre les Myopathies, FranceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)IBMC, Nerve Regenerat Grp, P-4150180 Oporto, PortugalUniversidade Federal de São Paulo, Escola Paulista Med, BR-04044020 São Paulo, BrazilIBMC, Mol Neurobiol Grp, P-4150180 Oporto, PortugalIBMC, Mol Struct Grp, P-4150180 Oporto, PortugalUniv Porto, CBAS, P-4099033 Oporto, PortugalActel Pharmaceut Ltd, CH-4123 Allschwil, SwitzerlandUniversidade Federal de São Paulo, Escola Paulista Med, BR-04044020 São Paulo, BrazilFundacao para a Ciencia e Tecnologia (FCT): PTDC/SAU-GMG/111761/2009Fundacao para a Ciencia e Tecnologia (FCT): PTDC/SAU-ORG/118863/2010Fundacao para a Ciencia e Tecnologia (FCT): SFRH/BPD/34811/2007Fundacao para a Ciencia e Tecnologia (FCT): SFRH/BD/72240/2010Web of Scienc
Seminal Plasma Proteins
The ejaculated semen consists of two major components viz. sperm cells (spermatozoa) and the fluid part obtained after centrifugation called seminal plasma. The spermatozoa originate from the semniferous tubule and are suspended in the seminal plasma. The seminal plasma is composed of secretions contributed by the testis, epididymis, seminal vesicles, ampullae, prostate and bulbourethral glands. About 60-80 % of the ejaculated semen of the bull originates from these sources. Seminal plasma is a highly complex biological fluid containing proteins, amino acids, enzymes, fructose and other carbohydrates, lipids, major minerals and trace elements. Seminal plasma proteins partly originates from the blood plasma by exudation through the lumen of the male genital tract and partly are synthesized and secreted by various reproductive organs and are known as seminal plasma specific proteins. Several seminal plasma proteins of blood origin viz. prealbumin, albumin, globulin, transferring, α-antitrypsin, β-lipoprotein, β-glycoprotein, orsomucoid, kininogen, Peptide hormones, IgG, IgA and IgM have been identified and characterized. These proteins are involved in regulation of osmotic pressure and pH of seminal plasma, transport of ions, lipid and hormones. A major part of seminal plasma proteins originate from the testis, epididymis, vas deference, prostate, seminal vesicle and bulbourethral glands. The biosynthesis and secretion of these proteins is regulated by testosterone levels in the blood
Pulse of inflammatory proteins in the pregnant uterus of European polecats (Mustela putorius) leading to the time of implantation
Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general
Recommended from our members
Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma.
The innate immune response of airway epithelial cells to airborne allergens initiates the development of T cell responses that are central to allergic inflammation. Although proteinase allergens induce the expression of interleukin 25, we show here that epithelial matrix metalloproteinase 7 (MMP7) was expressed during asthma and was required for the maximum activity of interleukin 25 in promoting the differentiation of T helper type 2 cells. Allergen-challenged Mmp7(-/-) mice had less airway hyper-reactivity and production of allergic inflammatory cytokines and higher expression of retinal dehydrogenase 1. Inhibition of retinal dehydrogenase 1 restored the asthma phenotype of Mmp7(-/-) mice and inhibited the responses of lung regulatory T cells, whereas exogenous administration of retinoic acid attenuated the asthma phenotype. Thus, MMP7 coordinates allergic lung inflammation by activating interleukin 25 while simultaneously inhibiting retinoid-dependent development of regulatory T cells
Recommended from our members
SREBP1-dependent de novo fatty acid synthesis gene expression is elevated in malignant melanoma and represents a cellular survival trait.
de novo fatty acid biosynthesis (DNFA) is a hallmark adaptation of many cancers that supports survival, proliferation, and metastasis. Here we elucidate previously unexplored aspects of transcription regulation and clinical relevance of DNFA in cancers. We show that elevated expression of DNFA genes is characteristic of many tumor types and correlates with poor prognosis, especially in melanomas. Elevated DNFA gene expression depends on the SREBP1 transcription factor in multiple melanoma cell lines. SREBP1 predominantly binds to the transcription start sites of DNFA genes, regulating their expression by recruiting RNA polymerase II to promoters for productive transcription elongation. We find that SREBP1-regulated DNFA represents a survival trait in melanoma cells, regardless of proliferative state and oncogenic mutation status. Indeed, malignant melanoma cells exhibit elevated DNFA gene expression after the BRAF/MEK signaling pathway is blocked (e.g. by BRAF inhibitors), and DNFA expression remains higher in melanoma cells resistant to vemurafenib treatment than in untreated cells. Accordingly, DNFA pathway inhibition, whether by direct targeting of SREBP1 with antisense oligonucleotides, or through combinatorial effects of multiple DNFA enzyme inhibitors, exerts potent cytotoxic effects on both BRAFi-sensitive and -resistant melanoma cells. Altogether, these results implicate SREBP1 and DNFA enzymes as enticing therapeutic targets in melanomas
Recommended from our members
Viral hijacking of cellular metabolism.
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade
Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases
- …
