267 research outputs found

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    CNN based Learning using Reflection and Retinex Models for Intrinsic Image Decomposition

    Get PDF
    Most of the traditional work on intrinsic image decomposition rely on deriving priors about scene characteristics. On the other hand, recent research use deep learning models as in-and-out black box and do not consider the well-established, traditional image formation process as the basis of their intrinsic learning process. As a consequence, although current deep learning approaches show superior performance when considering quantitative benchmark results, traditional approaches are still dominant in achieving high qualitative results. In this paper, the aim is to exploit the best of the two worlds. A method is proposed that (1) is empowered by deep learning capabilities, (2) considers a physics-based reflection model to steer the learning process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and shading gradient information. The proposed model is fast to compute and allows for the integration of all intrinsic components. To train the new model, an object centered large-scale datasets with intrinsic ground-truth images are created. The evaluation results demonstrate that the new model outperforms existing methods. Visual inspection shows that the image formation loss function augments color reproduction and the use of gradient information produces sharper edges. Datasets, models and higher resolution images are available at https://ivi.fnwi.uva.nl/cv/retinet.Comment: CVPR 201

    Race classification using gaussian-based weight K-nn algorithm for face recognition

    Get PDF
    One of the greatest challenges in facial recognition systems is to recognize faces around different race and illuminations. Chromaticity is an essential factor in facial recognition and shows the intensity of the color in a pixel, it can greatly vary depending on the lighting conditions. The race classification scheme proposed which is Gaussian based-weighted K-Nearest Neighbor classifier in this paper, has very sensitive to illumination intensity. The main idea is first to identify the minority class instances in the training data and then generalize them to Gaussian function as concept for the minority class. By using combination of K-NN algorithm with Gaussian formula for race classification. In this paper, image processing is divided into two phases. The first is preprocessing phase. There are three preprocessing comprises of auto contrast balance, noise reduction and auto-color balancing. The second phase is face processing which contains six steps; face detection, illumination normalization, feature extraction, skin segmentation, race classification and face recognition. There are two type of dataset are being used; first FERET dataset where images inside this dataset involve of illumination variations. The second is Caltech dataset which images side this dataset contains noises

    Low-Light Image Enhancement Based on U-Net and Haar Wavelet Pooling

    Get PDF
    The inevitable environmental and technical limitations of image capturing has as a consequence that many images are frequently taken in inadequate and unbalanced lighting conditions. Low-light image enhancement has been very popular for improving the visual quality of image representations, while low-light images often require advanced techniques to improve the perception of information for a human viewer. One of the main objectives in increasing the lighting conditions is to retain patterns, texture, and style with minimal deviations from the considered image. To this direction, we propose a low-light image enhancement method with Haar wavelet-based pooling to preserve texture regions and increase their quality. The presented framework is based on the U-Net architecture to retain spatial information, with a multi-layer feature aggregation (MFA) method. The method obtains the details from the low-level layers in the stylization processing. The encoder is based on dense blocks, while the decoder is the reverse of the encoder, and extracts features that reconstruct the image. Experimental results show that the combination of the U-Net architecture with dense blocks and the wavelet-based pooling mechanism comprises an efficient approach in low-light image enhancement applications. Qualitative and quantitative evaluation demonstrates that the proposed framework reaches state-of-the-art accuracy but with less resources than LeGAN

    Performance analysis of different matrix decomposition methods on face recognition

    Get PDF
    Applications using face biometric are ubiquitous in various domains. We propose an efficient method using Discrete Wavelet Transform (DWT), Extended Directional Binary codes (EDBC), three matrix decompositions and Singular Value Decomposition (SVD) for face recognition. The combined effect of Schur, Hessenberg and QR matrix decompositions are utilized with existing algorithm. The discrimination power between two different persons is justified using Average Overall Deviation (AOD) parameter. Fused EDBC and SVD features are considered for performance calculation. City-block and Euclidean Distance (ED) measure is used for matching. Performance is improved on YALE, GTAV and ORL face databases compared with existing methods

    Performance analysis of different matrix decomposition methods on face recognition

    Full text link

    Illumination Processing in Face Recognition

    Get PDF

    Image factorization and feature fusion for enhancing robot vision in human face recognition

    Get PDF
    corecore