2 research outputs found

    Rethinking Spatially-Adaptive Normalization

    Full text link
    Spatially-adaptive normalization is remarkably successful recently in conditional semantic image synthesis, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to preserve the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the true advantages inside the box is still highly demanded, to help reduce the significant computation and parameter overheads introduced by these new structures. In this paper, from a return-on-investment point of view, we present a deep analysis of the effectiveness of SPADE and observe that its advantages actually come mainly from its semantic-awareness rather than the spatial-adaptiveness. Inspired by this point, we propose class-adaptive normalization (CLADE), a lightweight variant that is not adaptive to spatial positions or layouts. Benefited from this design, CLADE greatly reduces the computation cost while still being able to preserve the semantic information during the generation. Extensive experiments on multiple challenging datasets demonstrate that while the resulting fidelity is on par with SPADE, its overhead is much cheaper than SPADE. Take the generator for ADE20k dataset as an example, the extra parameter and computation cost introduced by CLADE are only 4.57% and 0.07% while that of SPADE are 39.21% and 234.73% respectively

    You Only Need Adversarial Supervision for Semantic Image Synthesis

    Full text link
    Despite their recent successes, GAN models for semantic image synthesis still suffer from poor image quality when trained with only adversarial supervision. Historically, additionally employing the VGG-based perceptual loss has helped to overcome this issue, significantly improving the synthesis quality, but at the same time limiting the progress of GAN models for semantic image synthesis. In this work, we propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results. We re-design the discriminator as a semantic segmentation network, directly using the given semantic label maps as the ground truth for training. By providing stronger supervision to the discriminator as well as to the generator through spatially- and semantically-aware discriminator feedback, we are able to synthesize images of higher fidelity with better alignment to their input label maps, making the use of the perceptual loss superfluous. Moreover, we enable high-quality multi-modal image synthesis through global and local sampling of a 3D noise tensor injected into the generator, which allows complete or partial image change. We show that images synthesized by our model are more diverse and follow the color and texture distributions of real images more closely. We achieve an average improvement of 66 FID and 55 mIoU points over the state of the art across different datasets using only adversarial supervision.Comment: Published at ICLR 2021 (Main Conference). Code repository: https://github.com/boschresearch/OASI
    corecore