3 research outputs found

    Monotone Retargeting for Unsupervised Rank Aggregation with Object Features

    Full text link
    Learning the true ordering between objects by aggregating a set of expert opinion rank order lists is an important and ubiquitous problem in many applications ranging from social choice theory to natural language processing and search aggregation. We study the problem of unsupervised rank aggregation where no ground truth ordering information in available, neither about the true preference ordering between any set of objects nor about the quality of individual rank lists. Aggregating the often inconsistent and poor quality rank lists in such an unsupervised manner is a highly challenging problem, and standard consensus-based methods are often ill-defined, and difficult to solve. In this manuscript we propose a novel framework to bypass these issues by using object attributes to augment the standard rank aggregation framework. We design algorithms that learn joint models on both rank lists and object features to obtain an aggregated rank ordering that is more accurate and robust, and also helps weed out rank lists of dubious validity. We validate our techniques on synthetic datasets where our algorithm is able to estimate the true rank ordering even when the rank lists are corrupted. Experiments on three real datasets, MQ2008, MQ2008 and OHSUMED, show that using object features can result in significant improvement in performance over existing rank aggregation methods that do not use object information. Furthermore, when at least some of the rank lists are of high quality, our methods are able to effectively exploit their high expertise to output an aggregated rank ordering of great accuracy.Comment: 15 pages, 2 figures, 1 tabl

    Clustered Monotone Transforms for Rating Factorization

    Full text link
    Exploiting low-rank structure of the user-item rating matrix has been the crux of many recommendation engines. However, existing recommendation engines force raters with heterogeneous behavior profiles to map their intrinsic rating scales to a common rating scale (e.g. 1-5). This non-linear transformation of the rating scale shatters the low-rank structure of the rating matrix, therefore resulting in a poor fit and consequentially, poor recommendations. In this paper, we propose Clustered Monotone Transforms for Rating Factorization (CMTRF), a novel approach to perform regression up to unknown monotonic transforms over unknown population segments. Essentially, for recommendation systems, the technique searches for monotonic transformations of the rating scales resulting in a better fit. This is combined with an underlying matrix factorization regression model that couples the user-wise ratings to exploit shared low dimensional structure. The rating scale transformations can be generated for each user, for a cluster of users, or for all the users at once, forming the basis of three simple and efficient algorithms proposed in this paper, all of which alternate between transformation of the rating scales and matrix factorization regression. Despite the non-convexity, CMTRF is theoretically shown to recover a unique solution under mild conditions. Experimental results on two synthetic and seven real-world datasets show that CMTRF outperforms other state-of-the-art baselines.Comment: The first two authors contributed equally to the paper. The paper to appear in WSDM 201

    Advances in Collaborative Filtering and Ranking

    Full text link
    In this dissertation, we cover some recent advances in collaborative filtering and ranking. In chapter 1, we give a brief introduction of the history and the current landscape of collaborative filtering and ranking; chapter 2 we first talk about pointwise collaborative filtering problem with graph information, and how our proposed new method can encode very deep graph information which helps four existing graph collaborative filtering algorithms; chapter 3 is on the pairwise approach for collaborative ranking and how we speed up the algorithm to near-linear time complexity; chapter 4 is on the new listwise approach for collaborative ranking and how the listwise approach is a better choice of loss for both explicit and implicit feedback over pointwise and pairwise loss; chapter 5 is about the new regularization technique Stochastic Shared Embeddings (SSE) we proposed for embedding layers and how it is both theoretically sound and empirically effectively for 6 different tasks across recommendation and natural language processing; chapter 6 is how we introduce personalization for the state-of-the-art sequential recommendation model with the help of SSE, which plays an important role in preventing our personalized model from overfitting to the training data; chapter 7, we summarize what we have achieved so far and predict what the future directions can be; chapter 8 is the appendix to all the chapters.Comment: PhD Dissertation 202
    corecore