446,165 research outputs found
The Bytown Gunners: The History of Ottawa’s Artillery, 1855-2015 (Book Review) by Kenneth W. Reynolds
Review of The Bytown Gunners: The History of Ottawa’s Artillery, 1855-2015 by Kenneth W. Reynolds
Predicting signatures of anisotropic resonance energy transfer in dye-functionalized nanoparticles
Resonance energy transfer (RET) is an inherently anisotropic process. Even
the simplest, well-known F\"orster theory, based on the transition
dipole-dipole coupling, implicitly incorporates the anisotropic character of
RET. In this theoretical work, we study possible signatures of the fundamental
anisotropic character of RET in hybrid nanomaterials composed of a
semiconductor nanoparticle (NP) decorated with molecular dyes. In particular,
by means of a realistic kinetic model, we show that the analysis of the dye
photoluminescence difference for orthogonal input polarizations reveals the
anisotropic character of the dye-NP RET which arises from the intrinsic
anisotropy of the NP lattice. In a prototypical core/shell wurtzite CdSe/ZnS NP
functionalized with cyanine dyes (Cy3B), this difference is predicted to be as
large as 75\% and it is strongly dependent in amplitude and sign on the dye-NP
distance. We account for all the possible RET processes within the system,
together with competing decay pathways in the separate segments. In addition,
we show that the anisotropic signature of RET is persistent up to a large
number of dyes per NP.Comment: 9 pages, 5 figures. Supplementary information available at
http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra22433d/unauth#!divAbstrac
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
Mutations of the ret protooncogene in German multiple endocrine neoplasia families: Relation between genotype and phenotype.
It has been suggested that not only the position but also the nature of the mutations of the ret protooncogene strongly correlate with the clinical manifestation of the multiple endocrine neoplasm type 2 (MEN 2) syndrome. In particular, individuals with a Cys634-Arg substitution should have a greater risk of developing parathyroid disease. We, therefore, analyzed 94 unrelated families from Germany with inherited medullary thyroid carcinoma (MTC) for mutation of the ret protooncogene. In all but 1 of 59 families with MEN 2A, germline mutations in the extracellular domain of the ret protein were found. Some 81% of the MEN 2A mutations affected codon 634. Phenotype-genotype correlations suggested that the prevalence of pheochromocytoma and hyperparathyroidism is significantly higher in families with codon 634 mutations, but there was no correlation with the nature of the mutation. In all but 1 of 27 familial MTC (FMTC) families, mutations were detected in 1 of 4 cysteines in the extracellular domain of the ret protooncogene. Half of the FMTC mutations affected codon 634. Mutations outside of codon 634 occurred more often in FMTC families than in MEN 2A families. In all but 1 of 8 MEN 2B patients, de novo mutations in codon 918 were found. These data confirm the preferential localization of MEN 2-associated mutations and the correlation between disease phenotype and the position of the ret mutation, but there was no correlation between the occurrence of hyperparathyroidism or pheochromocytoma and the nature of the mutation
Oncogenic RET Kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans
To decipher the molecular basis for RET kinase activation and oncogenic deregulation, we defined the temporal sequence of RET autophosphorylation by label-free quantitative mass spectrometry. Early autophosphorylation sites map to regions flanking the kinase domain core, while sites within the activation loop only form at later time points. Comparison with oncogenic RET kinase revealed that late autophosphorylation sites become phosphorylated much earlier than wild-type RET, which is due to a combination of an enhanced enzymatic activity, increased ATP affinity, and surprisingly, by providing a better intermolecular substrate. Structural analysis of oncogenic M918T and wild-type RET kinase domains reveal a cis-inhibitory mechanism involving tethering contacts between the glycine-rich loop, activation loop, and αC-helix. Tether mutations only affected substrate presentation but perturbed the autophosphorylation trajectory similar to oncogenic mutations. This study reveals an unappreciated role for oncogenic RET kinase mutations in promoting intermolecular autophosphorylation by enhancing substrate presentation
Resonance energy transfer: The unified theory revisited
Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate
Bestselling Author Nathaniel Philbrick to Deliver 2015 Commencement Address
Renowned Massachusetts Supreme Court Chief Justice (Ret.) Roderick L. Ireland to deliver law school address
ESTIMATING RETURNS TO AGRICULTURAL RESEARCH, EXTENSION, AND TEACHING AT THE STATE LEVEL
The majority of decisions concerning investment and allocation of public funds for agricultural research, extension, and teaching (RET) are made at the state-level, while most of the quantitative RET evaluations are made on a national basis. This paper illustrates an approach for conducting a disaggregated state-level evaluation of agricultural research, extension, and teaching. Ridge regression is employed to handle multicollinearity problems.Teaching/Communication/Extension/Profession,
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
We have investigated the genetic circuitry underlying the determination of neuronal identity, using mammalian peripheral autonomic neurons as a model system. Previously, we showed that treatment of neural crest stem cells (NCSCs) with bone morphogenetic protein-2 (BMP-2) leads to an induction of MASH1 expression and consequent autonomic neuronal differentiation. We now show that BMP2 also induces expression of the paired homeodomain transcription factor Phox2a, and the GDNF/NTN signalling receptor tyrosine kinase c-RET. Constitutive expression of MASH1 in NCSCs from a retroviral vector, in the absence of exogenous BMP2, induces expression of both Phox2a and c-RET in a large fraction of infected colonies, and also promotes morphological neuronal differentiation and expression of pan-neuronal markers. In vivo, expression of Phox2a in autonomic ganglia is strongly reduced in Mash1 -/- embryos. These loss- and gain-of-function data suggest that MASH1 positively regulates expression of Phox2a, either directly or indirectly. Constitutive expression of Phox2a, by contrast to MASH1, fails to induce expression of neuronal markers or a neuronal morphology, but does induce expression of c-RET. These data suggest that MASH1 couples expression of pan-neuronal and subtype-specific components of autonomic neuronal identity, and support the general idea that identity is established by combining subprograms involving cascades of transcription factors, which specify distinct components of neuronal phenotype
- …
