46,275 research outputs found

    A Static Optimality Transformation with Applications to Planar Point Location

    Full text link
    Over the last decade, there have been several data structures that, given a planar subdivision and a probability distribution over the plane, provide a way for answering point location queries that is fine-tuned for the distribution. All these methods suffer from the requirement that the query distribution must be known in advance. We present a new data structure for point location queries in planar triangulations. Our structure is asymptotically as fast as the optimal structures, but it requires no prior information about the queries. This is a 2D analogue of the jump from Knuth's optimum binary search trees (discovered in 1971) to the splay trees of Sleator and Tarjan in 1985. While the former need to know the query distribution, the latter are statically optimal. This means that we can adapt to the query sequence and achieve the same asymptotic performance as an optimum static structure, without needing any additional information.Comment: 13 pages, 1 figure, a preliminary version appeared at SoCG 201

    Smooth heaps and a dual view of self-adjusting data structures

    Full text link
    We present a new connection between self-adjusting binary search trees (BSTs) and heaps, two fundamental, extensively studied, and practically relevant families of data structures. Roughly speaking, we map an arbitrary heap algorithm within a natural model, to a corresponding BST algorithm with the same cost on a dual sequence of operations (i.e. the same sequence with the roles of time and key-space switched). This is the first general transformation between the two families of data structures. There is a rich theory of dynamic optimality for BSTs (i.e. the theory of competitiveness between BST algorithms). The lack of an analogous theory for heaps has been noted in the literature. Through our connection, we transfer all instance-specific lower bounds known for BSTs to a general model of heaps, initiating a theory of dynamic optimality for heaps. On the algorithmic side, we obtain a new, simple and efficient heap algorithm, which we call the smooth heap. We show the smooth heap to be the heap-counterpart of Greedy, the BST algorithm with the strongest proven and conjectured properties from the literature, widely believed to be instance-optimal. Assuming the optimality of Greedy, the smooth heap is also optimal within our model of heap algorithms. As corollaries of results known for Greedy, we obtain instance-specific upper bounds for the smooth heap, with applications in adaptive sorting. Intriguingly, the smooth heap, although derived from a non-practical BST algorithm, is simple and easy to implement (e.g. it stores no auxiliary data besides the keys and tree pointers). It can be seen as a variation on the popular pairing heap data structure, extending it with a "power-of-two-choices" type of heuristic.Comment: Presented at STOC 2018, light revision, additional figure

    Parallel Working-Set Search Structures

    Full text link
    In this paper we present two versions of a parallel working-set map on p processors that supports searches, insertions and deletions. In both versions, the total work of all operations when the map has size at least p is bounded by the working-set bound, i.e., the cost of an item depends on how recently it was accessed (for some linearization): accessing an item in the map with recency r takes O(1+log r) work. In the simpler version each map operation has O((log p)^2+log n) span (where n is the maximum size of the map). In the pipelined version each map operation on an item with recency r has O((log p)^2+log r) span. (Operations in parallel may have overlapping span; span is additive only for operations in sequence.) Both data structures are designed to be used by a dynamic multithreading parallel program that at each step executes a unit-time instruction or makes a data structure call. To achieve the stated bounds, the pipelined data structure requires a weak-priority scheduler, which supports a limited form of 2-level prioritization. At the end we explain how the results translate to practical implementations using work-stealing schedulers. To the best of our knowledge, this is the first parallel implementation of a self-adjusting search structure where the cost of an operation adapts to the access sequence. A corollary of the working-set bound is that it achieves work static optimality: the total work is bounded by the access costs in an optimal static search tree.Comment: Authors' version of a paper accepted to SPAA 201

    In pursuit of the dynamic optimality conjecture

    Full text link
    In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm. Splay trees were conjectured to perform within a constant factor as any offline rotation-based search tree algorithm on every sufficiently long sequence---any binary search tree algorithm that has this property is said to be dynamically optimal. However, currently neither splay trees nor any other tree algorithm is known to be dynamically optimal. Here we survey the progress that has been made in the almost thirty years since the conjecture was first formulated, and present a binary search tree algorithm that is dynamically optimal if any binary search tree algorithm is dynamically optimal.Comment: Preliminary version of paper to appear in the Conference on Space Efficient Data Structures, Streams and Algorithms to be held in August 2013 in honor of Ian Munro's 66th birthda

    Self-Improving Algorithms

    Full text link
    We investigate ways in which an algorithm can improve its expected performance by fine-tuning itself automatically with respect to an unknown input distribution D. We assume here that D is of product type. More precisely, suppose that we need to process a sequence I_1, I_2, ... of inputs I = (x_1, x_2, ..., x_n) of some fixed length n, where each x_i is drawn independently from some arbitrary, unknown distribution D_i. The goal is to design an algorithm for these inputs so that eventually the expected running time will be optimal for the input distribution D = D_1 * D_2 * ... * D_n. We give such self-improving algorithms for two problems: (i) sorting a sequence of numbers and (ii) computing the Delaunay triangulation of a planar point set. Both algorithms achieve optimal expected limiting complexity. The algorithms begin with a training phase during which they collect information about the input distribution, followed by a stationary regime in which the algorithms settle to their optimized incarnations.Comment: 26 pages, 8 figures, preliminary versions appeared at SODA 2006 and SoCG 2008. Thorough revision to improve the presentation of the pape
    • …
    corecore