7,841 research outputs found

    On Compression of Unsupervised Neural Nets by Pruning Weak Connections

    Full text link
    Unsupervised neural nets such as Restricted Boltzmann Machines(RBMs) and Deep Belif Networks(DBNs), are powerful in automatic feature extraction,unsupervised weight initialization and density estimation. In this paper,we demonstrate that the parameters of these neural nets can be dramatically reduced without affecting their performance. We describe a method to reduce the parameters required by RBM which is the basic building block for deep architectures. Further we propose an unsupervised sparse deep architectures selection algorithm to form sparse deep neural networks.Experimental results show that there is virtually no loss in either generative or discriminative performance

    A Deep Bag-of-Features Model for Music Auto-Tagging

    Full text link
    Feature learning and deep learning have drawn great attention in recent years as a way of transforming input data into more effective representations using learning algorithms. Such interest has grown in the area of music information retrieval (MIR) as well, particularly in music audio classification tasks such as auto-tagging. In this paper, we present a two-stage learning model to effectively predict multiple labels from music audio. The first stage learns to project local spectral patterns of an audio track onto a high-dimensional sparse space in an unsupervised manner and summarizes the audio track as a bag-of-features. The second stage successively performs the unsupervised learning on the bag-of-features in a layer-by-layer manner to initialize a deep neural network and finally fine-tunes it with the tag labels. Through the experiment, we rigorously examine training choices and tuning parameters, and show that the model achieves high performance on Magnatagatune, a popularly used dataset in music auto-tagging.Comment: We resubmit a new version to revive the paper and record it as a technical report. We did not add any incremental work to the previous work but removed out some sections (criticized by a review process) and polished sentences accordingl

    Towards Machine Intelligence

    Full text link
    There exists a theory of a single general-purpose learning algorithm which could explain the principles of its operation. This theory assumes that the brain has some initial rough architecture, a small library of simple innate circuits which are prewired at birth and proposes that all significant mental algorithms can be learned. Given current understanding and observations, this paper reviews and lists the ingredients of such an algorithm from both architectural and functional perspectives.Comment: 10 pages, submitted to AGI-16. arXiv admin note: substantial text overlap with arXiv:1512.0192

    Tiny Descriptors for Image Retrieval with Unsupervised Triplet Hashing

    Full text link
    A typical image retrieval pipeline starts with the comparison of global descriptors from a large database to find a short list of candidate matches. A good image descriptor is key to the retrieval pipeline and should reconcile two contradictory requirements: providing recall rates as high as possible and being as compact as possible for fast matching. Following the recent successes of Deep Convolutional Neural Networks (DCNN) for large scale image classification, descriptors extracted from DCNNs are increasingly used in place of the traditional hand crafted descriptors such as Fisher Vectors (FV) with better retrieval performances. Nevertheless, the dimensionality of a typical DCNN descriptor --extracted either from the visual feature pyramid or the fully-connected layers-- remains quite high at several thousands of scalar values. In this paper, we propose Unsupervised Triplet Hashing (UTH), a fully unsupervised method to compute extremely compact binary hashes --in the 32-256 bits range-- from high-dimensional global descriptors. UTH consists of two successive deep learning steps. First, Stacked Restricted Boltzmann Machines (SRBM), a type of unsupervised deep neural nets, are used to learn binary embedding functions able to bring the descriptor size down to the desired bitrate. SRBMs are typically able to ensure a very high compression rate at the expense of loosing some desirable metric properties of the original DCNN descriptor space. Then, triplet networks, a rank learning scheme based on weight sharing nets is used to fine-tune the binary embedding functions to retain as much as possible of the useful metric properties of the original space. A thorough empirical evaluation conducted on multiple publicly available dataset using DCNN descriptors shows that our method is able to significantly outperform state-of-the-art unsupervised schemes in the target bit range

    DeepHash: Getting Regularization, Depth and Fine-Tuning Right

    Full text link
    This work focuses on representing very high-dimensional global image descriptors using very compact 64-1024 bit binary hashes for instance retrieval. We propose DeepHash: a hashing scheme based on deep networks. Key to making DeepHash work at extremely low bitrates are three important considerations -- regularization, depth and fine-tuning -- each requiring solutions specific to the hashing problem. In-depth evaluation shows that our scheme consistently outperforms state-of-the-art methods across all data sets for both Fisher Vectors and Deep Convolutional Neural Network features, by up to 20 percent over other schemes. The retrieval performance with 256-bit hashes is close to that of the uncompressed floating point features -- a remarkable 512 times compression

    Learning Musical Relations using Gated Autoencoders

    Full text link
    Music is usually highly structured and it is still an open question how to design models which can successfully learn to recognize and represent musical structure. A fundamental problem is that structurally related patterns can have very distinct appearances, because the structural relationships are often based on transformations of musical material, like chromatic or diatonic transposition, inversion, retrograde, or rhythm change. In this preliminary work, we study the potential of two unsupervised learning techniques - Restricted Boltzmann Machines (RBMs) and Gated Autoencoders (GAEs) - to capture pre-defined transformations from constructed data pairs. We evaluate the models by using the learned representations as inputs in a discriminative task where for a given type of transformation (e.g. diatonic transposition), the specific relation between two musical patterns must be recognized (e.g. an upward transposition of diatonic steps). Furthermore, we measure the reconstruction error of models when reconstructing musical transformed patterns. Lastly, we test the models in an analogy-making task. We find that it is difficult to learn musical transformations with the RBM and that the GAE is much more adequate for this task, since it is able to learn representations of specific transformations that are largely content-invariant. We believe these results show that models such as GAEs may provide the basis for more encompassing music analysis systems, by endowing them with a better understanding of the structures underlying music.Comment: In Proceedings of the 2nd Conference on Computer Simulation of Musical Creativity (CSMC 2017

    An exact mapping between the Variational Renormalization Group and Deep Learning

    Full text link
    Deep learning is a broad set of techniques that uses multiple layers of representation to automatically learn relevant features directly from structured data. Recently, such techniques have yielded record-breaking results on a diverse set of difficult machine learning tasks in computer vision, speech recognition, and natural language processing. Despite the enormous success of deep learning, relatively little is understood theoretically about why these techniques are so successful at feature learning and compression. Here, we show that deep learning is intimately related to one of the most important and successful techniques in theoretical physics, the renormalization group (RG). RG is an iterative coarse-graining scheme that allows for the extraction of relevant features (i.e. operators) as a physical system is examined at different length scales. We construct an exact mapping from the variational renormalization group, first introduced by Kadanoff, and deep learning architectures based on Restricted Boltzmann Machines (RBMs). We illustrate these ideas using the nearest-neighbor Ising Model in one and two-dimensions. Our results suggests that deep learning algorithms may be employing a generalized RG-like scheme to learn relevant features from data.Comment: 8 pages, 3 figure

    Learning to update Auto-associative Memory in Recurrent Neural Networks for Improving Sequence Memorization

    Full text link
    Learning to remember long sequences remains a challenging task for recurrent neural networks. Register memory and attention mechanisms were both proposed to resolve the issue with either high computational cost to retain memory differentiability, or by discounting the RNN representation learning towards encoding shorter local contexts than encouraging long sequence encoding. Associative memory, which studies the compression of multiple patterns in a fixed size memory, were rarely considered in recent years. Although some recent work tries to introduce associative memory in RNN and mimic the energy decay process in Hopfield nets, it inherits the shortcoming of rule-based memory updates, and the memory capacity is limited. This paper proposes a method to learn the memory update rule jointly with task objective to improve memory capacity for remembering long sequences. Also, we propose an architecture that uses multiple such associative memory for more complex input encoding. We observed some interesting facts when compared to other RNN architectures on some well-studied sequence learning tasks

    Thinking Required

    Full text link
    There exists a theory of a single general-purpose learning algorithm which could explain the principles its operation. It assumes the initial rough architecture, a small library of simple innate circuits which are prewired at birth. and proposes that all significant mental algorithms are learned. Given current understanding and observations, this paper reviews and lists the ingredients of such an algorithm from architectural and functional perspectives.Comment: 18 page

    Decreasing the size of the Restricted Boltzmann machine

    Full text link
    We propose a method to decrease the number of hidden units of the restricted Boltzmann machine while avoiding decrease of the performance measured by the Kullback-Leibler divergence. Then, we demonstrate our algorithm by using numerical simulations
    • …
    corecore