59,628 research outputs found

    Joint Visual Denoising and Classification using Deep Learning

    Full text link
    Visual restoration and recognition are traditionally addressed in pipeline fashion, i.e. denoising followed by classification. Instead, observing correlations between the two tasks, for example clearer image will lead to better categorization and vice visa, we propose a joint framework for visual restoration and recognition for handwritten images, inspired by advances in deep autoencoder and multi-modality learning. Our model is a 3-pathway deep architecture with a hidden-layer representation which is shared by multi-inputs and outputs, and each branch can be composed of a multi-layer deep model. Thus, visual restoration and classification can be unified using shared representation via non-linear mapping, and model parameters can be learnt via backpropagation. Using MNIST and USPS data corrupted with structured noise, the proposed framework performs at least 20\% better in classification than separate pipelines, as well as clearer recovered images. The noise model and the reproducible source code is available at {\url{https://github.com/ganggit/jointmodel}}.Comment: 5 pages, 7 figures, ICIP 201

    Fast and easy blind deblurring using an inverse filter and PROBE

    Full text link
    PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. Using the elementary modified inverse filter at its core, PROBE's experimental performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties. PROBE is motivated by recent ideas on progressive blind deblurring, but breaks away from previous research by its simplicity, speed, performance and potential for analysis. PROBE is neither a functional minimization approach, nor an open-loop sequential method (blur kernel estimation followed by non-blind deblurring). PROBE is a feedback scheme, deriving its unique strength from the closed-loop architecture rather than from the accuracy of its algorithmic components

    UG^2: a Video Benchmark for Assessing the Impact of Image Restoration and Enhancement on Automatic Visual Recognition

    Full text link
    Advances in image restoration and enhancement techniques have led to discussion about how such algorithmscan be applied as a pre-processing step to improve automatic visual recognition. In principle, techniques like deblurring and super-resolution should yield improvements by de-emphasizing noise and increasing signal in an input image. But the historically divergent goals of the computational photography and visual recognition communities have created a significant need for more work in this direction. To facilitate new research, we introduce a new benchmark dataset called UG^2, which contains three difficult real-world scenarios: uncontrolled videos taken by UAVs and manned gliders, as well as controlled videos taken on the ground. Over 160,000 annotated frames forhundreds of ImageNet classes are available, which are used for baseline experiments that assess the impact of known and unknown image artifacts and other conditions on common deep learning-based object classification approaches. Further, current image restoration and enhancement techniques are evaluated by determining whether or not theyimprove baseline classification performance. Results showthat there is plenty of room for algorithmic innovation, making this dataset a useful tool going forward.Comment: Supplemental material: https://goo.gl/vVM1xe, Dataset: https://goo.gl/AjA6En, CVPR 2018 Prize Challenge: ug2challenge.or
    • …
    corecore