4,793 research outputs found

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Animating observed emotional behaviour: a practice-based investigation comparing three approaches to self-figurative animation

    Get PDF
    This research explores different animation approaches to rendering observed emotional behaviour, through the creation of an animated artefact. It opens with an introduction to the research and the methodology chosen before progressing to a review of academic and practitioner-based literature associated with observed emotional behaviour. Building upon this foundation of literature, the thesis outlines how the artifact was created with a practice based approach drawn from Haseman’s cycle of creation, feedback, reflection and then creation. The main research question is augmented by a series of contributory questions that explore the research through iterations of animation drawn from a base of live action footage of observed emotional behaviour. These exploratory iterations progress though motion capture, rotoscopy and finally freeform animation. The completed artifact and its findings are explored first though a perception study and then a production study. This thesis is based on the investigation and discourse of observed emotional behaviour surrounding the use of animation, specifically, the direct study of the observation of emotional behaviour through the application of animation as a tool of research. It aims to provide a basis of discussion and contribution to knowledge for animation practitioners, theorists and practitioner-researchers seeking to use less performative and exaggerated forms

    Evaluating Spatial Normalization Methods for the Human Brain

    Get PDF
    Cortical stimulation mapping (CSM) studies have shown cortical locations for language function are highly variable from one subject to the next. Because no two cortical surfaces are alike and language is a higher order cognitive function, observed variability is attributable to a combination of functional and anatomical variation. If individual variation can be normalized, patterns of language organization may emerge that were heretofore hidden. In order to discover whether or not such patterns exist, computer-aided spatial normalization is required. Because CSM data has been collected on the cortical surface, we believe that a surface-based normalization method will provide more accurate results than will a volume-based method. To investigate this hypothesis, we evaluate a surface-based (Caret) and volume-based method (SPM2). For our application, the "ideal" method would i) minimize variation as measured by spread reduction between cortical language sites across subjects while also ii) preserving anatomical localization of sites. Evaluation technique: Eleven MR image volumes and corresponding CSM site coordinates were selected. Images were segmented to create left hemisphere surface reconstruction for each patient. Individual surfaces were registered to the colin27 human brain atlas using each method. Deformation parameters from each method were applied to CSM coordinates to obtain post-normalization coordinates in 2D space and 3D ICBM152 space. Accuracy metrics were calculated i) as mean distance between language sites across subjects in both 2D and 3D space and ii) by visual inspection of post-normalization site locations on a 2D map. Results: Globally, we found no statistically significant difference between CARET (surface-based method) and SPM2 (volume-based method) as measured by both spread reduction and anatomical localization. Local analysis showed that more than twenty percent of total mapping errors were mapped incorrectly by both methods. There was a statistically significant difference between Caret and SPM2 mapping of type 2 errors

    5th SC@RUG 2008 proceedings:Student Colloquium 2007-2008

    Get PDF

    5th SC@RUG 2008 proceedings:Student Colloquium 2007-2008

    Get PDF
    • 

    corecore