4,032,550 research outputs found
Driver-pressure-impact and response-recovery chains in European rivers: observed and predicted effects on BQEs
The report presented in the following is part of the outcome of WISER’s river Workpackage WP5.1 and as such part of the module on aquatic ecosystem management and restoration. The ultimate goal of WP5.1 is to provide guidance on best practice restoration and management to the practitioners in River Basin Management. Therefore, a series of analyses was undertaken, each of which used a part of the WP5.1 database in order to track two major pathways of biological response: 1) the response of riverine biota to environmental pressures (degradation) and 2) the response of biota to the reduction of these impacts (restoration). This report attempts to provide empirical evidence on the environment-biota relationships for both pathways
Riparian Meadow Response to Modern Conservation Grazing Management.
Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions
Environmental Response Management Application
The Coastal Response Research Center (CRRC), a partnership between the University of New Hampshire (UNH) and NOAA\u27s Office of Response and Restoration (ORR), is leading an effort to develop a data platform capable of interfacing both static and real-time data sets accessible simultaneously to a command post and assets in the field with an open source internet mapping server. The Environmental Response Management Application (ERMA™) is designed to give responders and decision makers ready access to geographically specific data useful during spill planning/drills, incident response, damage assessment and site restoration. In addition to oil spill and chemical release response, this website can be relevant to other environmental incidents and natural disasters, responses and regional planning efforts. The platform is easy to operate, without the assistance of Information Technology or Geographic Information Systems (GIS) specialists. It allows users to access individual data layer values, overlay relevant data sets, and zoom into segments of interest. The platform prototype is being developed specifically for Portsmouth Harbor and the Great Bay Estuary, NH. The prototype demonstrates the capabilities of an integrated data management platform and serves as the pilot for web-based GIS platforms in other regions
Evolutionary-thinking in agricultural weed management
Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate
2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs
This report represents a scientific and working clinical consensus statement on seizure management in dogs based on current literature and clinical expertise. The goal was to establish guidelines for a predetermined, concise, and logical sequential approach to chronic seizure management starting with seizure identification and diagnosis (not included in this report), reviewing decision‐making, treatment strategies, focusing on issues related to chronic antiepileptic drug treatment response and monitoring, and guidelines to enhance patient response and quality of life. Ultimately, we hope to provide a foundation for ongoing and future clinical epilepsy research in veterinary medicine
Software life cycle dynamic simulation model: The organizational performance submodel
The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces
- …
