810,535 research outputs found

    Towards data-aware resource analysis for service orchestrations

    Get PDF
    Compile-time program analysis techniques can be applied to Web service orchestrations to prove or check various properties. In particular, service orchestrations can be subjected to resource analysis, in which safe approximations of upper and lower resource usage bounds are deduced. A uniform analysis can be simultaneously performed for different generalized resources that can be directiy correlated with cost- and performance-related quality attributes, such as invocations of partners, network traffic, number of activities, iterations, and data accesses. The resulting safe upper and lower bounds do not depend on probabilistic assumptions, and are expressed as functions of size or length of data components from an initiating message, using a finegrained structured data model that corresponds to the XML-style of information structuring. The analysis is performed by transforming a BPEL-like representation of an orchestration into an equivalent program in another programming language for which the appropriate analysis tools already exist

    Work Analysis with Resource-Aware Session Types

    Full text link
    While there exist several successful techniques for supporting programmers in deriving static resource bounds for sequential code, analyzing the resource usage of message-passing concurrent processes poses additional challenges. To meet these challenges, this article presents an analysis for statically deriving worst-case bounds on the total work performed by message-passing processes. To decompose interacting processes into components that can be analyzed in isolation, the analysis is based on novel resource-aware session types, which describe protocols and resource contracts for inter-process communication. A key innovation is that both messages and processes carry potential to share and amortize cost while communicating. To symbolically express resource usage in a setting without static data structures and intrinsic sizes, resource contracts describe bounds that are functions of interactions between processes. Resource-aware session types combine standard binary session types and type-based amortized resource analysis in a linear type system. This type system is formulated for a core session-type calculus of the language SILL and proved sound with respect to a multiset-based operational cost semantics that tracks the total number of messages that are exchanged in a system. The effectiveness of the analysis is demonstrated by analyzing standard examples from amortized analysis and the literature on session types and by a comparative performance analysis of different concurrent programs implementing the same interface.Comment: 25 pages, 2 pages of references, 11 pages of appendix, Accepted at LICS 201

    Accelerating Large-scale Data Exploration through Data Diffusion

    Full text link
    Data-intensive applications often require exploratory analysis of large datasets. If analysis is performed on distributed resources, data locality can be crucial to high throughput and performance. We propose a "data diffusion" approach that acquires compute and storage resources dynamically, replicates data in response to demand, and schedules computations close to data. As demand increases, more resources are acquired, thus allowing faster response to subsequent requests that refer to the same data; when demand drops, resources are released. This approach can provide the benefits of dedicated hardware without the associated high costs, depending on workload and resource characteristics. The approach is reminiscent of cooperative caching, web-caching, and peer-to-peer storage systems, but addresses different application demands. Other data-aware scheduling approaches assume dedicated resources, which can be expensive and/or inefficient if load varies significantly. To explore the feasibility of the data diffusion approach, we have extended the Falkon resource provisioning and task scheduling system to support data caching and data-aware scheduling. Performance results from both micro-benchmarks and a large scale astronomy application demonstrate that our approach improves performance relative to alternative approaches, as well as provides improved scalability as aggregated I/O bandwidth scales linearly with the number of data cache nodes.Comment: IEEE/ACM International Workshop on Data-Aware Distributed Computing 200

    Implementation of resource recovery practices among Malaysian construction stakeholders

    Get PDF
    Most of the construction stakeholders around the world especially in developing countries are not really aware of the Resource Recovery approaches in contemporary construction projects. Previous studies reported that Resource Recovery issues received less attention from the construction industry stakeholders compared to construction costs and time related issues. However, this trend has changed due to the depletion of non-renewable resources, greenhouse gas emissions and global warming with much effort now being directed to ‘build greener’ construction projects through proper application of the Resource Recovery approach. This study examined current application of Resource Recovery approach among Malaysia’s construction stakeholders. Primary data were gathered from 122 questionnaires returned by Malaysian construction stakeholders that included consultants, contractors and clients . The analysis revealed that the adoption of Resource Recovery was only mildly practiced by the Malaysian construction stakeholders

    HPS-HDS:High Performance Scheduling for Heterogeneous Distributed Systems

    Get PDF
    Heterogeneous Distributed Systems (HDS) are often characterized by a variety of resources that may or may not be coupled with specific platforms or environments. Such type of systems are Cluster Computing, Grid Computing, Peer-to-Peer Computing, Cloud Computing and Ubiquitous Computing all involving elements of heterogeneity, having a large variety of tools and software to manage them. As computing and data storage needs grow exponentially in HDS, increasing the size of data centers brings important diseconomies of scale. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance. More, HDS are highly dynamic in its structure, because the user requests must be respected as an agreement rule (SLA) and ensure QoS, so new algorithm for events and tasks scheduling and new methods for resource management should be designed to increase the performance of such systems. In this special issues, the accepted papers address the advance on scheduling algorithms, energy-aware models, self-organizing resource management, data-aware service allocation, Big Data management and processing, performance analysis and optimization
    • …
    corecore