612,006 research outputs found
A model predictive control approach to the periodic implementation of the solutions of the optimal dynamic resource allocation problem
This paper proposes a model predictive control (MPC) approach to the periodic implementation of the optimal solutions of a class of resource allocation problems in which the allocation requirements and conditions repeat periodically over time. This special class of resource allocation problems includes many practical energy optimization problems such as load scheduling and generation dispatch. The convergence and robustness of the MPC algorithm is proved by invoking results from convex optimization. To illustrate the practical applications of the MPC algorithm, the energy optimization of a water pumping system is studied
A Utility Proportional Fairness Radio Resource Block Allocation in Cellular Networks
This paper presents a radio resource block allocation optimization problem
for cellular communications systems with users running delay-tolerant and
real-time applications, generating elastic and inelastic traffic on the network
and being modelled as logarithmic and sigmoidal utilities respectively. The
optimization is cast under a utility proportional fairness framework aiming at
maximizing the cellular systems utility whilst allocating users the resource
blocks with an eye on application quality of service requirements and on the
procedural temporal and computational efficiency. Ultimately, the sensitivity
of the proposed modus operandi to the resource variations is investigated
Resilient Distributed Optimization Algorithms for Resource Allocation
Distributed algorithms provide flexibility over centralized algorithms for
resource allocation problems, e.g., cyber-physical systems. However, the
distributed nature of these algorithms often makes the systems susceptible to
man-in-the-middle attacks, especially when messages are transmitted between
price-taking agents and a central coordinator. We propose a resilient strategy
for distributed algorithms under the framework of primal-dual distributed
optimization. We formulate a robust optimization model that accounts for
Byzantine attacks on the communication channels between agents and coordinator.
We propose a resilient primal-dual algorithm using state-of-the-art robust
statistics methods. The proposed algorithm is shown to converge to a
neighborhood of the robust optimization model, where the neighborhood's radius
is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201
Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems
In this paper, we study the resource allocation algorithm design for downlink
multicarrier transmission with a shared user equipment (UE)-side distributed
antenna system (SUDAS) which utilizes both licensed and unlicensed frequency
bands for improving the system throughput. The joint UE selection and
transceiver processing matrix design is formulated as a non-convex optimization
problem for the maximization of the end-to-end system throughput (bits/s). In
order to obtain a tractable resource allocation algorithm, we first show that
the optimal transmitter precoding and receiver post-processing matrices jointly
diagonalize the end-to-end communication channel. Subsequently, the
optimization problem is converted to a scalar optimization problem for multiple
parallel channels, which is solved by using an asymptotically optimal iterative
algorithm. Simulation results illustrate that the proposed resource allocation
algorithm for the SUDAS achieves an excellent system performance and provides a
spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference
(VTC) Spring, Glasgow, Scotland, UK, May 201
- …
