2,590 research outputs found

    Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.

    Get PDF
    Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    Body size in ecological networks

    Get PDF
    Body size determines a host of species traits that can affect the structure and dynamics of food webs, and other ecological networks, across multiple scales of organization. Measuring body size provides a relatively simple means of encapsulating and condensing a large amount of the biological information embedded within an ecological network. Recently, important advances have been made by incorporating body size into theoretical models that explore food web stability, the patterning of energy fluxes, and responses to perturbations. Because metabolic constraints underpin body-size scaling relationships, metabolic theory offers a potentially useful new framework within which to develop novel models to describe the structure and functioning of ecological networks and to assess the probable consequences of biodiversity change. © 2005 Elsevier Ltd. All rights reserved.Peer Reviewe

    Soil as an Extended Composite Phenotype of the Microbial Metagenome

    Get PDF
    We use a unique set of terrestrial experiments to demonstrate how soil management practises result in emergence of distinct associations between physical structure and biological functions. These associations have a significant effect on the flux, resilience and efficiency of nutrient delivery to plants (including water). Physical structure determining the air-water balance in soil as well as transport rates is influenced by nutrient and physical interventions. Contrasting emergent soil structures exert selective pressures upon the microbiome metagenome. These selective pressures are associated with the quality of organic carbon inputs, the prevalence of anaerobic microsites and delivery of nutrients to microorganisms attached to soil surfaces. This variety results in distinctive gene assemblages characterising each state. The nature of the interactions provide evidence that soil behaves as an extended composite phenotype of the resident microbiome, responsive to the input and turnover of plant-derived organic carbon. We provide new evidence supporting the theory that soil-microbe systems are self-organising states with organic carbon acting as a critical determining parameter. This perspective leads us to propose carbon flux, rather than soil organic carbon content as the critical factor in soil systems, and we present evidence to support this view

    Evolutionary systems biology of bacterial metabolic adaptation

    Get PDF

    A hybrid flux balance analysis and machine learning pipeline elucidates the metabolic response of cyanobacteria to different growth conditions

    Get PDF
    Machine learning has recently emerged as a promising tool for inferring multi-omic relationships in biological systems. At the same time, genome-scale metabolic models (GSMMs) can be integrated with such multi-omic data to refine phenotypic predictions. In this work, we use a multi-omic machine learning pipeline to analyze a GSMM of Synechococcus sp. PCC 7002, a cyanobacterium with large potential to produce renewable biofuels. We use regularized flux balance analysis to observe flux response between conditions across photosynthesis and energy metabolism. We then incorporate principal-component analysis, k-means clustering, and LASSO regularization to reduce dimensionality and extract key cross-omic features. Our results suggest that combining metabolic modeling with machine learning elucidates mechanisms used by cyanobacteria to cope with fluctuations in light intensity and salinity that cannot be detected using transcriptomics alone. Furthermore, GSMMs introduce critical mechanistic details that improve the performance of omic-based machine learning methods

    Elementary approaches to microbial growth rate maximisation

    Get PDF
    This thesis, called Elementary approaches to microbial growth rate maximisation, reports on a theoretical search for principles underlying single cell growth, in particular for microbial species that are selected for fast growth rates. First, the optimally growing cell is characterised in terms of its elementary modes. We prove an extremum principle: a cell that maximises a metabolic rate uses few Elementary Flux Modes (EFMs, the minimal pathways that support steady-state metabolism). The number of active EFMs is bounded by the number of growth-limiting constraints. Later, this extremum principle is extended in a theory that explicitly accounts for self-fabrication. For this, we had to define the elementary modes that underlie balanced self-fabrication: minimal self-supporting sets of expressed enzymes that we call Elementary Growth Modes (EGMs). It turns out that many of the results for EFMs can be extended to their more general self-fabrication analogue. Where the above extremum principles tell us that few elementary modes are used by a rate-maximising cell, it does not tell us how the cell can find them. Therefore, we also search for an elementary adaptation method. It turns out that stochastic phenotype switching with growth rate dependent switching rates provides an adaptation mechanism that is often competitive with more conventional regulatory-circuitry based mechanisms. The derived theory is applied in two ways. First, the extremum principles are used to review the mathematical fundaments of all optimisation-based explanations of overflow metabolism. Second, a computational tool is presented that enumerates Elementary Conversion Modes. These elementary modes can be computed for larger networks than EFMs and EGMs, and still provide an overview of the metabolic capabilities of an organism

    Mechanistic understanding of mixed-culture fermentations by metabolic modelling

    Get PDF
    Biorefineries are set to become an important agent in the shift towards a circular economy due to their potential to valorise organic wastes into marketable products. Anaerobic fermentations yielding volatile fatty acids are a key process in this production scheme as their products act as intermediates between the organic wastes and the final biorefinery products. However, their product selectivity is highly influenced by the environmental conditions and the mechanisms governing the process remain unknown. In this thesis, predictive tools were developed with the objective of understanding the mechanisms governing anaerobic fermentations and of designing processes targeting specific volatile fatty acids with high productivity

    Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    Get PDF
    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate.Financial support from Spanish Government (grant reference: BFU2012-39816-C02-01 co-financed by FEDER funds and Ministerio de Economía y Competitividad) and Generalitat Valenciana (grant reference: PROMETEOII/2014/065) is grateful acknowledged.Peer reviewe
    corecore