223,973 research outputs found
A model predictive control approach to the periodic implementation of the solutions of the optimal dynamic resource allocation problem
This paper proposes a model predictive control (MPC) approach to the periodic implementation of the optimal solutions of a class of resource allocation problems in which the allocation requirements and conditions repeat periodically over time. This special class of resource allocation problems includes many practical energy optimization problems such as load scheduling and generation dispatch. The convergence and robustness of the MPC algorithm is proved by invoking results from convex optimization. To illustrate the practical applications of the MPC algorithm, the energy optimization of a water pumping system is studied
Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network
Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively
Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems
In this paper, we study the resource allocation algorithm design for downlink
multicarrier transmission with a shared user equipment (UE)-side distributed
antenna system (SUDAS) which utilizes both licensed and unlicensed frequency
bands for improving the system throughput. The joint UE selection and
transceiver processing matrix design is formulated as a non-convex optimization
problem for the maximization of the end-to-end system throughput (bits/s). In
order to obtain a tractable resource allocation algorithm, we first show that
the optimal transmitter precoding and receiver post-processing matrices jointly
diagonalize the end-to-end communication channel. Subsequently, the
optimization problem is converted to a scalar optimization problem for multiple
parallel channels, which is solved by using an asymptotically optimal iterative
algorithm. Simulation results illustrate that the proposed resource allocation
algorithm for the SUDAS achieves an excellent system performance and provides a
spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference
(VTC) Spring, Glasgow, Scotland, UK, May 201
Improved Convergence Rates for Distributed Resource Allocation
In this paper, we develop a class of decentralized algorithms for solving a
convex resource allocation problem in a network of agents, where the agent
objectives are decoupled while the resource constraints are coupled. The agents
communicate over a connected undirected graph, and they want to collaboratively
determine a solution to the overall network problem, while each agent only
communicates with its neighbors. We first study the connection between the
decentralized resource allocation problem and the decentralized consensus
optimization problem. Then, using a class of algorithms for solving consensus
optimization problems, we propose a novel class of decentralized schemes for
solving resource allocation problems in a distributed manner. Specifically, we
first propose an algorithm for solving the resource allocation problem with an
convergence rate guarantee when the agents' objective functions are
generally convex (could be nondifferentiable) and per agent local convex
constraints are allowed; We then propose a gradient-based algorithm for solving
the resource allocation problem when per agent local constraints are absent and
show that such scheme can achieve geometric rate when the objective functions
are strongly convex and have Lipschitz continuous gradients. We have also
provided scalability/network dependency analysis. Based on these two
algorithms, we have further proposed a gradient projection-based algorithm
which can handle smooth objective and simple constraints more efficiently.
Numerical experiments demonstrates the viability and performance of all the
proposed algorithms
- …
