276 research outputs found

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Unified and Distributed QoS-Driven Cell Association Algorithms in Heterogeneous Networks

    Full text link
    This paper addresses the cell association problem in the downlink of a multi-tier heterogeneous network (HetNet), where base stations (BSs) have finite number of resource blocks (RBs) available to distribute among their associated users. Two problems are defined and treated in this paper: sum utility of long term rate maximization with long term rate quality of service (QoS) constraints, and global outage probability minimization with outage QoS constraints. The first problem is well-suited for low mobility environments, while the second problem provides a framework to deal with environments with fast fading. The defined optimization problems in this paper are solved in two phases: cell association phase followed by the optional RB distribution phase. We show that the cell association phase of both problems have the same structure. Based on this similarity, we propose a unified distributed algorithm with low levels of message passing to for the cell association phase. This distributed algorithm is derived by relaxing the association constraints and using Lagrange dual decomposition method. In the RB distribution phase, the remaining RBs after the cell association phase are distributed among the users. Simulation results show the superiority of our distributed cell association scheme compared to schemes that are based on maximum signal to interference plus noise ratio (SINR)

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Get PDF
    IEEE In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation and gradient-search method. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated where the macro-cell optimal RE and the corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Optimal Distributed Resource Allocation for Decode-and-Forward Relay Networks

    Full text link
    This paper presents a distributed resource allocation algorithm to jointly optimize the power allocation, channel allocation and relay selection for decode-and-forward (DF) relay networks with a large number of sources, relays, and destinations. The well-known dual decomposition technique cannot directly be applied to resolve this problem, because the achievable data rate of DF relaying is not strictly concave, and thus the local resource allocation subproblem may have non-unique solutions. We resolve this non-strict concavity problem by using the idea of the proximal point method, which adds quadratic terms to make the objective function strictly concave. However, the proximal solution adds an extra layer of iterations over typical duality based approaches, which can significantly slow down the speed of convergence. To address this key weakness, we devise a fast algorithm without the need for this additional layer of iterations, which converges to the optimal solution. Our algorithm only needs local information exchange, and can easily adapt to variations of network size and topology. We prove that our distributed resource allocation algorithm converges to the optimal solution. A channel resource adjustment method is further developed to provide more channel resources to the bottleneck links and realize traffic load balance. Numerical results are provided to illustrate the benefits of our algorithm

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization
    corecore