958,862 research outputs found

    Resource allocation

    Get PDF
    This report discusses the problem of the allocation of resources: how should an organisation (such as MOD) invest bearing in mind the long term delay for the realization of investment strategies, and how might this apply in times of increasing budgetary constraints? After making certain simplifying assumptions, the Study Group constructed a prototype model based on the method of Optimal Control. This allows the decision maker to investigate the impact of particular investment strategies over a period of years, the impact being measured in terms of “quality” or “capability”. Interventions can be designed so that “quality” (Q) is maximized at a particular time, or so that the average quality over a given time interval is maximized. Both of these approaches are explored. This model shows reasonable behaviour when tested over a parameter set. It could be used as part of a systems approach to the defence budget as a whole, but the method itself is scalable to smaller (or larger) resourcing conundrums

    Resource Competition on Integral Polymatroids

    Full text link
    We study competitive resource allocation problems in which players distribute their demands integrally on a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a nondecreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.Comment: 17 page

    Context-Aware Resource Allocation in Cellular Networks

    Full text link
    We define and propose a resource allocation architecture for cellular networks. The architecture combines content-aware, time-aware and location-aware resource allocation for next generation broadband wireless systems. The architecture ensures content-aware resource allocation by prioritizing real-time applications users over delay-tolerant applications users when allocating resources. It enables time-aware resource allocation via traffic-dependent pricing that varies during different hours of day (e.g. peak and off-peak traffic hours). Additionally, location-aware resource allocation is integrable in this architecture by including carrier aggregation of various frequency bands. The context-aware resource allocation is an optimal and flexible architecture that can be easily implemented in practical cellular networks. We highlight the advantages of the proposed network architecture with a discussion on the future research directions for context-aware resource allocation architecture. We also provide experimental results to illustrate a general proof of concept for this new architecture.Comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Get PDF
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    Hypergraph Theory: Applications in 5G Heterogeneous Ultra-Dense Networks

    Full text link
    Heterogeneous ultra-dense network (HUDN) can significantly increase the spectral efficiency of cellular networks and cater for the explosive growth of data traffic in the fifth-generation (5G) communications. Due to the dense deployment of small cells (SCs), interference among neighboring cells becomes severe. As a result, the effective resource allocation and user association algorithms are essential to minimize inter-cell interference and optimize network performance. However, optimizing network resources in HUDN is extremely complicated as resource allocation and user association are coupled. Therefore, HUDN requires low-complexity but effective resource allocation schemes to address these issues. Hypergraph theory has been recognized as a useful mathematical tool to model the complex relations among multiple entities. In this article, we show how the hypergraph models can be used to effectively tackle resource allocation problems in HUDN. We also discuss several potential research issues in this field
    corecore