3 research outputs found

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Resource Allocation in Millimeter-Wave Device-to-Device Networks

    No full text
    Recently, the mobile wireless communication has seen explosive growth in data traffic which might not be supported by the current Fourth Generation (4G) networks. The Fifth Generation (5G) networks will overcome this challenge by exploiting a higher spectrum available in millimeter-wave (mmwave) band to improve network throughput. The integration of the millimeter-wave communication with device-to-device communication can be an enabling 5G scheme in providing bandwidth-intensive proximity-based services such as video sharing, live streaming of data, and socially aware networking. Furthermore, the current cellular network traffic can also be offloaded by the D2D user devices thereby reducing loading at Base Stations (BSs), which would then increase the system capacity. However, the mmwave D2D communication is associated with numerous challenges, which include signal blockages, user mobility, high-computational complexity resource allocation algorithms, and increase in interuser interference for dense D2D user scenario. The paper presents review of existing channel and power allocation approaches and mathematical resource optimization solution techniques. In addition, the paper discusses the challenges hindering the realization of an effective allocation scheme in mmwave D2D communication and gives open research issues for further study

    Resource Allocation in Millimeter-Wave Device-to-Device Networks

    No full text
    corecore