9 research outputs found

    Robust URLLC Packet Scheduling of OFDM Systems

    Full text link
    In this paper, we consider the power minimization problem of joint physical resource block (PRB) assignment and transmit power allocation under specified delay and reliability requirements for ultra-reliable and low-latency communication (URLLC) in downlink cellular orthogonal frequency-division multiple-access (OFDMA) system. To be more practical, only the imperfect channel state information (CSI) is assumed to be available at the base station (BS). The formulated problem is a combinatorial and mixed-integer nonconvex problem and is difficult to tackle. Through techniques of slack variables introduction, the first-order Taylor approximation and reweighted â„“1\ell_1-norm, we approximate it by a convex problem and the successive convex approximation (SCA) based iterative algorithm is proposed to yield sub-optimal solutions. Numerical results provide some insights into the impact of channel estimation error, user number, the allowable maximum delay and packet error probability on the required system sum power

    Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)

    Get PDF
    The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most of the devices are mobile; therefore, the impact of mobility can be seen in terms of low-device utilization. Thus, most of the time, the available resources are underutilized. Therefore, the inception of the fog computing model in IIoT has reduced the communication delay in executing complex tasks. However, it is not feasible to cover the entire region through fog nodes; therefore, fog node selection and placement is still the challenging task. This paper proposes a multi-level hierarchical fog node deployment model for the industrial environment. Moreover, the scheme utilized the IoT devices as a fog node; however, the selection depends on energy, path/location, network properties, storage, and available computing resources. Therefore, the scheme used the location-aware module before engaging the device for task computation. The framework is evaluated in terms of memory, CPU, scalability, and system efficiency; also compared with the existing approach in terms of task acceptance rate. The scheme is compared with xFogSim framework that is capable to handle workload upto 1000 devices. However, the task acceptance ratio is higher in the proposed framework due to its multi-tier model. The workload acceptance ratio is 85% reported with 3000 devices; whereas, in xFogsim the ratio is reduced to approx. 68%. The primary reason for high workload acceptation is that the proposed solution utilizes the unused resources of the user devices for computations

    Resource Allocation for Secure URLLC in Mission-Critical IoT Scenario

    Get PDF
    Ultra-reliable low latency communication (URLLC) is one of three primary use cases in the fifth-generation (5G) networks, and its research is still in its infancy due to its stringent and conflicting requirements in terms of extremely high reliability and low latency. To reduce latency, the channel blocklength for packet transmission is finite, which incurs transmission rate degradation and higher decoding error probability. In this case, conventional resource allocation based on Shannon capacity achieved with infinite blocklength codes is not optimal. Security is another critical issue in mission-critical internet of things (IoT) communications, and physical-layer security is a promising technique that can ensure the confidentiality for wireless communications as no additional channel uses are needed for the key exchange as in the conventional upper-layer cryptography method. This paper is the first work to study the resource allocation for a secure mission-critical IoT communication system with URLLC. Specifically, we adopt the security capacity formula under finite blocklength and consider two optimization problems: weighted throughput maximization problem and total transmit power minimization problem. Each optimization problem is non-convex and challenging to solve, and we develop efficient methods to solve each optimization problem. Simulation results confirm the fast convergence speed of our proposed algorithm and demonstrate the performance advantages over the existing benchmark algorithms.Comment: Submitted to one IEEE journa

    Joint Pilot and Payload Power Allocation for Massive-MIMO-enabled URLLC IIoT Networks

    Full text link
    The Fourth Industrial Revolution (Industrial 4.0) is coming, and this revolution will fundamentally enhance the way the factories manufacture products. The conventional wired lines connecting central controller to robots or actuators will be replaced by wireless communication networks due to its low cost of maintenance and high deployment flexibility. However, some critical industrial applications require ultra-high reliability and low latency communication (URLLC). In this paper, we advocate the adoption of massive multiple-input multiple output (MIMO) to support the wireless transmission for industrial applications as it can provide deterministic communications similar as wired lines thanks to its channel hardening effects. To reduce the latency, the channel blocklength for packet transmission is finite, and suffers from transmission rate degradation and decoding error probability. Thus, conventional resource allocation for massive MIMO transmission based on Shannon capacity assuming the infinite channel blocklength is no longer optimal. We first derive the closed-form expression of lower bound (LB) of achievable uplink data rate for massive MIMO system with imperfect channel state information (CSI) for both maximum-ratio combining (MRC) and zero-forcing (ZF) receivers. Then, we propose novel low-complexity algorithms to solve the achievable data rate maximization problems by jointly optimizing the pilot and payload transmission power for both MRC and ZF. Simulation results confirm the rapid convergence speed and performance advantage over the existing benchmark algorithms.Comment: Accepted in IEEE JSAC with special issue on Industry 4.0. Keywords: URLLC, Industrial 4.0, Industrial Internet-of-Things (IIoT), Massive MIM

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF
    corecore