4 research outputs found

    Resolving the Simultaneous Resettability Conjecture and a New Non-Black-Box Simulation Strategy

    Get PDF
    Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) introduced the notion of resettable zero-knowledge proofs, where the protocol must be zero-knowledge even if a cheating verifier can reset the prover and have several interactions in which the prover uses the same random tape. Soon afterwards, Barak, Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the closely related notion of resettable soundness, where the soundness condition of the protocol must hold even if the cheating prover can reset the verifier to have multiple interactions with the same verifier\u27s random tape. The main problem left open by this work was whether it is possible to have a single protocol that is simultaneously resettable zero knowledge and resettably sound. We resolve this question by constructing such a protocol. At the heart of our construction is a new non-black-box simulation strategy, which we believe to be of independent interest. This new strategy allows for simulators which ``marry\u27\u27 recursive rewinding techniques (common in the context of concurrent simulation) with non-black-box simulation. Previous non-black-box strategies led to exponential blowups in computational complexity in such circumstances, which our new strategy is able to avoid

    Some Low Round Zero Knowledge Protocols

    Get PDF
    In this paper, we focus on zero-knowledge protocols for NP with low round complexity under the augmented black-box simulation technique, in which the simulator has access to the verifier\u27s secret information, and obtain positive results on 3-round zero-knowledge proofs and 2-round zero-knowledge arguments for NP and 2-round zero-knowledge proofs for QNR. More precisely, our contributions are five-fold: (i) we propose the notion of generalized claw-free function and the notion of trapdoor generalized claw-free function, and then we show a construction of trapdoor generalized claw-free function under the discrete logarithm assumption and the knowledge of exponent assumption, (ii) we propose the notion of completely extractable bit-commitment and give a construction of it from trapdoor generalized claw-free functions, (iii) we present a 3-round zero-knowledge proof for NP based on the completely extractable bit-commitment schemes and Yao\u27s garbling circuit technique, (iv) we show a 2-round zero-knowledge argument for NP based on indistinguishable obfuscator, (v) we transform the basic 2-round honest verifier zero-knowledge proof protocol for quadratic non-residue into a 2-round zero-knowledge proof protocol

    A constant-round resettably-sound resettable zero-knowledge argument in the BPK model

    Get PDF
    In resetting attacks against a proof system, a prover or a verifier is reset and enforced to use the same random tape on various inputs as many times as an adversary may want. Recent deployment of cloud computing gives these attacks a new importance. This paper shows that argument systems for any NP language that are both resettably-sound and resettable zero-knowledge are possible by a constant-round protocol in the BPK model. For that sake, we define and construct a resettably-extractable {\em conditional} commitment scheme

    Resolving the Simultaneous Resettability Conjecture and a New Non-Black-Box Simulation Strategy

    No full text
    corecore