270,537 research outputs found
Enabling Disaster Resilient 4G Mobile Communication Networks
The 4G Long Term Evolution (LTE) is the cellular technology expected to
outperform the previous generations and to some extent revolutionize the
experience of the users by taking advantage of the most advanced radio access
techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies
between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core
(EPC) limit the flexibility, manageability and resiliency in such networks. In
case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are
in fact unable to communicate. In this article, we reshape the 4G mobile
network to move towards more virtual and distributed architectures for
improving disaster resilience, drastically reducing the dependency between UEs,
eNBs and EPC. The contribution of this work is twofold. We firstly present the
Flexible Management Entity (FME), a distributed entity which leverages on
virtualized EPC functionalities in 4G cellular systems. Second, we introduce a
simple and novel device-todevice (D2D) communication scheme allowing the UEs in
physical proximity to communicate directly without resorting to the
coordination with an eNB.Comment: Submitted to IEEE Communications Magazin
Optimal operations and resilient investments in steam networks
Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience
A resilient key predistribution scheme for multiphase wireless sensor networks
In wireless sensor networks, sensor nodes eventually die due to battery depletion. Wireless sensor networks (WSNs) in which new nodes are periodically redeployed with certain intervals, called generations, to replace the dead nodes are called multi-phase wireless sensor networks. In the literature, there are several key predistribution schemes proposed for secure operation of WSNs. However, these schemes are designed for single phase networks which are not resilient against continuous node capture attacks; even under temporary attacks on the network, the harm caused by the attacker does not heal in time. However, the periodic deployments in multi-phase sensor networks could be utilized to improve the resiliency of the WSNs by deploying nodes with fresh keys. In the literature, there is limited work done in this area. In this paper, we propose a key predistribution scheme for multi-phase wireless sensor networks which is highly resilient under node capture attacks. In our scheme, called RGM (random generation material) key predistribution scheme, each generation of deployment has its own random keying material and pairwise keys are established between node pairs of particular generations. These keys are specific to these generations. Therefore, a captured node cannot be abused to obtain keys of other generations. We compare the performance of our RGM scheme with a well-known multi-phase key predistribution scheme and showed that RGM achieves up to three-fold more resiliency. Even under heavy attacks, our scheme's resiliency performance is 50% better in steady state
On resilient control of dynamical flow networks
Resilience has become a key aspect in the design of contemporary
infrastructure networks. This comes as a result of ever-increasing loads,
limited physical capacity, and fast-growing levels of interconnectedness and
complexity due to the recent technological advancements. The problem has
motivated a considerable amount of research within the last few years,
particularly focused on the dynamical aspects of network flows, complementing
more classical static network flow optimization approaches. In this tutorial
paper, a class of single-commodity first-order models of dynamical flow
networks is considered. A few results recently appeared in the literature and
dealing with stability and robustness of dynamical flow networks are gathered
and originally presented in a unified framework. In particular, (differential)
stability properties of monotone dynamical flow networks are treated in some
detail, and the notion of margin of resilience is introduced as a quantitative
measure of their robustness. While emphasizing methodological aspects --
including structural properties, such as monotonicity, that enable tractability
and scalability -- over the specific applications, connections to
well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201
Resilient networking in wireless sensor networks
This report deals with security in wireless sensor networks (WSNs),
especially in network layer. Multiple secure routing protocols have been
proposed in the literature. However, they often use the cryptography to secure
routing functionalities. The cryptography alone is not enough to defend against
multiple attacks due to the node compromise. Therefore, we need more
algorithmic solutions. In this report, we focus on the behavior of routing
protocols to determine which properties make them more resilient to attacks.
Our aim is to find some answers to the following questions. Are there any
existing protocols, not designed initially for security, but which already
contain some inherently resilient properties against attacks under which some
portion of the network nodes is compromised? If yes, which specific behaviors
are making these protocols more resilient? We propose in this report an
overview of security strategies for WSNs in general, including existing attacks
and defensive measures. In this report we focus at the network layer in
particular, and an analysis of the behavior of four particular routing
protocols is provided to determine their inherent resiliency to insider
attacks. The protocols considered are: Dynamic Source Routing (DSR),
Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing
(RWR)
- …
