2,958 research outputs found

    Resilient and Decentralized Control of Multi-level Cooperative Mobile Networks to Maintain Connectivity under Adversarial Environment

    Full text link
    Network connectivity plays an important role in the information exchange between different agents in the multi-level networks. In this paper, we establish a game-theoretic framework to capture the uncoordinated nature of the decision-making at different layers of the multi-level networks. Specifically, we design a decentralized algorithm that aims to maximize the algebraic connectivity of the global network iteratively. In addition, we show that the designed algorithm converges to a Nash equilibrium asymptotically and yields an equilibrium network. To study the network resiliency, we introduce three adversarial attack models and characterize their worst-case impacts on the network performance. Case studies based on a two-layer mobile robotic network are used to corroborate the effectiveness and resiliency of the proposed algorithm and show the interdependency between different layers of the network during the recovery processes.Comment: 9 pages, 6 figure

    A distributed key establishment scheme for wireless mesh networks using identity-based cryptography

    Get PDF
    In this paper, we propose a secure and efficient key establishment scheme designed with respect to the unique requirements of Wireless Mesh Networks. Our security model is based on Identity-based key establishment scheme without the utilization of a trusted authority for private key operations. Rather, this task is performed by a collaboration of users; a threshold number of users come together in a coalition so that they generate the private key. We performed simulative performance evaluation in order to show the effect of both the network size and the threshold value. Results show a tradeoff between resiliency and efficiency: increasing the threshold value or the number of mesh nodes also increases the resiliency but negatively effects the efficiency. For threshold values smaller than 8 and for number of mesh nodes in between 40 and 100, at least 90% of the mesh nodes can compute their private keys within at most 70 seconds. On the other hand, at threshold value 8, an increase in the number of mesh nodes from 40 to 100 results in 25% increase in the rate of successful private key generations

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    corecore