1,278,172 research outputs found
Flushing Time Versus Residence Time for the Great Bay Estuary
The terms “flushing time” and “residence time” have cropped up often in discussions about water quality and eelgrass health in the Great Bay Estuary. Flushing time and residence time are not the same thing and should not be used interchangeably. Flushing time is defined as the time it takes to replace a certain water mass in a coastal system and is most often used as a general measurement of water exchange in an estuary used to relate water exchange from one estuary to another. The most recent estimates of flushing time (2013) for the Great Bay are between 2.5 and 7 days. Residence time describes how long a parcel, starting from a specified location within a waterbody, will remain in the waterbody before exiting; residence time is more often used to understand or predict chemical and biological processes for a particular system. The most recent estimate of residence time for the Great Bay (2005) is between 5 and 20 days
Customer population modelling with residence time structure
In many service industries, companies offer a variety of customer packages, with differing levels of service and associated charges. For example, in the case of cable companies, customers may choose to subscribe to different bundles of channels and may also buy phone and internet services. From time to time, customers will upgrade to a more expensive package, or possibly downgrade or discontinue their contract altogether. Numbercraft asked the Study Group to consider models for how the number of customers on each type of contract will change over time. Such models could be used to forecast companies' future income and also to ensure that marketing campaigns have maximum impact
Prolonged and tunable residence time using reversible covalent kinase inhibitors.
Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo
Residence time distributions in laminated microstructured plate reactors
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Residence time distributions (RTDs) have been investigated experimentally for systems with straight and zig-zag channels. The channels are formed by microstructured plates placed on top of each other and containing obstacles and holes to allow flow in 3 dimensions. Experimental RTD measurements were performed by monitoring the concentration of a tracer dye by means of a LED-photodiode system. The RTD was obtained for five different flowrates for both geometries. It was found that the zig-zag channel configuration gives a narrower distribution as compared to the straight channel one. Furthermore, as the flowrate increased the standard deviation of the distribution increased
On the Mean Residence Time in Stochastic Lattice-Gas Models
A heuristic law widely used in fluid dynamics for steady flows states that
the amount of a fluid in a control volume is the product of the fluid influx
and the mean time that the particles of the fluid spend in the volume, or mean
residence time. We rigorously prove that if the mean residence time is
introduced in terms of sample-path averages, then stochastic lattice-gas models
with general injection, diffusion, and extraction dynamics verify this law.
Only mild assumptions are needed in order to make the particles distinguishable
so that their residence time can be unambiguously defined. We use our general
result to obtain explicit expressions of the mean residence time for the Ising
model on a ring with Glauber + Kawasaki dynamics and for the totally asymmetric
simple exclusion process with open boundaries
Fractional diffusion modeling of ion channel gating
An anomalous diffusion model for ion channel gating is put forward. This
scheme is able to describe non-exponential, power-law like distributions of
residence time intervals in several types of ion channels. Our method presents
a generalization of the discrete diffusion model by Millhauser, Salpeter and
Oswald [Proc. Natl. Acad. Sci. USA 85, 1503 (1988)] to the case of a
continuous, anomalous slow conformational diffusion. The corresponding
generalization is derived from a continuous time random walk composed of
nearest neighbor jumps which in the scaling limit results in a fractional
diffusion equation. The studied model contains three parameters only: the mean
residence time, a characteristic time of conformational diffusion, and the
index of subdiffusion. A tractable analytical expression for the characteristic
function of the residence time distribution is obtained. In the limiting case
of normal diffusion, our prior findings [Proc. Natl. Acad. Sci. USA 99, 3552
(2002)] are reproduced. Depending on the chosen parameters, the fractional
diffusion model exhibits a very rich behavior of the residence time
distribution with different characteristic time-regimes. Moreover, the
corresponding autocorrelation function of conductance fluctuations displays
nontrivial features. Our theoretical model is in good agreement with
experimental data for large conductance potassium ion channels
Probability distribution of residence times of grains in models of ricepiles
We study the probability distribution of residence time of a grain at a site,
and its total residence time inside a pile, in different ricepile models. The
tails of these distributions are dominated by the grains that get deeply buried
in the pile. We show that, for a pile of size , the probabilities that the
residence time at a site or the total residence time is greater than , both
decay as for where
is an exponent , and values of and in the two
cases are different. In the Oslo ricepile model we find that the probability
that the residence time at a site being greater than or equal to ,
is a non-monotonic function of for a fixed and does not obey simple
scaling. For model in dimensions, we show that the probability of minimum
slope configuration in the steady state, for large , varies as where is a constant, and hence .Comment: 13 pages, 23 figures, Submitted to Phys. Rev.
Atmospheric residence time of CH3Br estimated from the junge spatial variability relation
The atmospheric residence time for methyl bromide (CH3Br) has been estimated as 0.8 +/- 0.1 years from its empirical spatial variability relative to C2H6, C2Cl4, CHCl3, and CH3Cl. This evaluation of the atmospheric residence time, based on Junge's 1963 general proposal, provides an estimate for CH3Br that is independent of source and sink estimates. Methyl bromide from combined natural and anthropogenic sources furnishes about half of the bromine that enters the stratosphere, where it plays an important role in ozone destruction. This residence time is consistent with the 0.7-year value recently calculated for CH3Br from the combined strength estimates for its known significant sinks
Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications
A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 µs respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved
- …
