49,415 research outputs found

    Behaviourally meaningful representations from normalisation and context-guided denoising

    Get PDF
    Many existing independent component analysis algorithms include a preprocessing stage where the inputs are sphered. This amounts to normalising the data such that all correlations between the variables are removed. In this work, I show that sphering allows very weak contextual modulation to steer the development of meaningful features. Context-biased competition has been proposed as a model of covert attention and I propose that sphering-like normalisation also allows weaker top-down bias to guide attention

    Connectionism, Analogicity and Mental Content

    Get PDF
    In Connectionism and the Philosophy of Psychology, Horgan and Tienson (1996) argue that cognitive processes, pace classicism, are not governed by exceptionless, “representation-level” rules; they are instead the work of defeasible cognitive tendencies subserved by the non-linear dynamics of the brain’s neural networks. Many theorists are sympathetic with the dynamical characterisation of connectionism and the general (re)conception of cognition that it affords. But in all the excitement surrounding the connectionist revolution in cognitive science, it has largely gone unnoticed that connectionism adds to the traditional focus on computational processes, a new focus – one on the vehicles of mental representation, on the entities that carry content through the mind. Indeed, if Horgan and Tienson’s dynamical characterisation of connectionism is on the right track, then so intimate is the relationship between computational processes and representational vehicles, that connectionist cognitive science is committed to a resemblance theory of mental content

    Trajectory recognition as the basis for object individuation: A functional model of object file instantiation and object token encoding

    Get PDF
    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially-disconnected stimuli as coherent objects. Based on relevant anatomical, functional, and developmental data, a functional model is developed that bases object individuation on the specific recognition of visual trajectories. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual variations of the model parameters are expected to generate distinct trajectory and object recognition abilities. Over-encoding of trajectory information in stored object tokens in early infancy, in particular, is expected to disrupt the ability to re-identify individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders

    Spatial groundings for meaningful symbols

    Get PDF
    The increasing availability of ontologies raises the need to establish relationships and make inferences across heterogeneous knowledge models. The approach proposed and supported by knowledge representation standards consists in establishing formal symbolic descriptions of a conceptualisation, which, it has been argued, lack grounding and are not expressive enough to allow to identify relations across separate ontologies. Ontology mapping approaches address this issue by exploiting structural or linguistic similarities between symbolic entities, which is costly, error-prone, and in most cases lack cognitive soundness. We argue that knowledge representation paradigms should have a better support for similarity and propose two distinct approaches to achieve it. We first present a representational approach which allows to ground symbolic ontologies by using Conceptual Spaces (CS), allowing for automated computation of similarities between instances across ontologies. An alternative approach is presented, which considers symbolic entities as contextual interpretations of processes in spacetime or Differences. By becoming a process of interpretation, symbols acquire the same status as other processes in the world and can be described (tagged) as well, which allows the bottom-up production of meaning

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • 

    corecore