680 research outputs found

    The Limitations of Being a Copycat: Learning Golf Putting Through Auditory and Visual Guidance

    Get PDF
    <p>The goal of this study was to investigate whether sensory cues carrying the kinematic template of expert performance (produced by mapping movement to a sound or visual cue) displayed prior to and during movement execution can enhance motor learning of a new skill (golf putting) in a group of novices. We conducted a motor learning study on a sample of 30 participants who were divided into three groups: a control, an auditory guide and visual guide group. The learning phase comprised of two sessions per week over a period of 4 weeks, giving rise to eight sessions. In each session participants made 20 shots to three different putting distances. All participants had their measurements taken at separate sessions without any guidance: baseline, transfer (different distances) and retention 2 weeks later. Results revealed a subtle improvement in goal attainment and a decrease in kinematic variability in the sensory groups (auditory and visual) compared to the control group. The comparable changes in performance between the visual and auditory guide groups, particularly during training, supports the idea that temporal patterns relevant to motor control can be perceived similarly through either visual or auditory modalities. This opens up the use of auditory displays to inform motor learning in tasks or situations where visual attention is otherwise constrained or unsuitable. Further research into the most useful template actions to display to learners may thus still support effective auditory guidance in motor learning.</p

    Attention and time constraints in performing and learning a table tennis forehand shot

    Get PDF
    This is a section on p. S95 of article 'Verbal and Poster: Motor Development, Motor Learning and Control, and Sport and Exercise Psychology' in Journal of Sport and Exercise Psychology, 2010, v.32, p.S36-S237published_or_final_versio

    Imagined Self-Motion Differs from Perceived Self-Motion: Evidence from a Novel Continuous Pointing Method

    Get PDF
    Background The extent to which actual movements and imagined movements maintain a shared internal representation has been a matter of much scientific debate. Of the studies examining such questions, few have directly compared actual full-body movements to imagined movements through space. Here we used a novel continuous pointing method to a) provide a more detailed characterization of self-motion perception during actual walking and b) compare the pattern of responding during actual walking to that which occurs during imagined walking. Methodology/Principal Findings This continuous pointing method requires participants to view a target and continuously point towards it as they walk, or imagine walking past it along a straight, forward trajectory. By measuring changes in the pointing direction of the arm, we were able to determine participants' perceived/imagined location at each moment during the trajectory and, hence, perceived/imagined self-velocity during the entire movement. The specific pattern of pointing behaviour that was revealed during sighted walking was also observed during blind walking. Specifically, a peak in arm azimuth velocity was observed upon target passage and a strong correlation was observed between arm azimuth velocity and pointing elevation. Importantly, this characteristic pattern of pointing was not consistently observed during imagined self-motion. Conclusions/Significance Overall, the spatial updating processes that occur during actual self-motion were not evidenced during imagined movement. Because of the rich description of self-motion perception afforded by continuous pointing, this method is expected to have significant implications for several research areas, including those related to motor imagery and spatial cognition and to applied fields for which mental practice techniques are common (e.g. rehabilitation and athletics)

    EEG coherence between the verbal-analytical region (T3) and the motor-planning region (Fz) increases under stress in explicit motor learners but not implicit motor learners

    Get PDF
    This journal supplement contains abstracts of NASPSPA 2010Free Communications - Verbal and Poster: Motor Learning and Controlpublished_or_final_versionThe Annual Conference of the North American Society for the Psychology of Sport and Physical Activity (NASPSPA 2010), Tucson, AZ., 10-12 June 2010. In Journal of Sport and Exercise Psychology, 2010, v. 32 suppl., p. S13

    Human Motion Analysis and Synthesis in Computer Graphics

    Get PDF
    This thesis focuses on solving a challenging problem in the field of computer graphics, namely to model and understand 3D human motion efficiently and meaningfully. This is vital to achieve the analysis (health & sports science), synthesis (character animation) and control (video game) of human movements. Though numerous studies have focused on improving the results of motion analysis, motion synthesis and motion control, only a few of these studies solved the problems from the fundamental part owing to the lack of information encoded in motion data. In my works, the motion of human was divided into the three types, namely single human motion, multi-people interactions and crowd movement. Subsequently, I solved the problems from motion analysis to motion control in different types of motion. In the single human motion, two types of motion graphs on the motion sequence were proposed using Markov Process. The human motion is represented as the directed graphs, which suggests the number of action patterns and transitions among them. By analyzing the graphs topologies, the richness, transitions flexibility and unpredictability among different action patterns inside the human motion sequence can be easily verified. The framework here is capable of visualizing and analyzing the human motion on the high level of action preference, intention and diversity. For the two people interaction motion, the use of 3D volumetric meshes on the interacting people was proposed to model their movement and spatial relationship among them. The semantic meanings of the motions were defined by such relationship. A customized Earth Movers Distance was proposed to assess the topological and geometric difference between two groups of meshes. The above assessment captured the semantic similarities among different two-people interactions, which is consistent with what humans perceive. With this interaction motion representation, the multi-people interactions in semantic level can be retrieved and analyzed, and such complex movements can be easily adapted and synthesized with low computational costs. In the crowd movement, a data-driven gesture-based crowd control system was proposed, in which the control scheme was learned from example gestures provided by different users. The users gestures and corresponding crowd motions, representable to the crowd motions properties and irrelevant to style variations of gestures and crowd motions, were modelled into a compact low dimensional space. With this representation, the proposed framework can take an arbitrary users input gesture and generate appropriate crowd motion in real time. This thesis shows the advantages of higher-level human motion modelling in different scenarios and solves different challenging tasks of computer graphics. The unified framework summarizes the knowledge to analyze, synthesize and control the movement of human

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 144

    Get PDF
    This bibliography lists 257 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    When motor control hangs in the balance: Sensorimotor learning during balance-challenging conditions

    Get PDF
    Maintaining balance while moving is fundamental for safe and successful motor performance. However, this aspect of daily movement is often overlooked in experimental paradigms that assess adaptation during constrained and/or isolated tasks. Consequently, we cannot easily extrapolate the results from these studies to naturalistic motor behaviours. The goal of this thesis is to determine how the necessity to maintain balance during unconstrained movement affects sensorimotor learning. For my first study, I assessed how challenging balance during adaptation affects generalization of learning. Four groups of participants adapted to a new visuomotor mapping induced by prism lenses while performing either a standing-based reaching or walking task, with or without a manipulation that challenged balance. To assess generalization, participants performed a single trial of each of the other group’s tasks without the prisms. I found that both the reaching and walking balance-challenged groups showed greater generalization to their equivalent, non-adapted task compared to the balance-unchallenged groups. I also found that challenging balance modulated generalization across the reaching and walking tasks. For my second study, I tested how challenging balance affected motor memory retention. To do this, the same four groups of participants returned to the lab and repeated their adaptation protocol one week later. I found that only the walking groups demonstrated faster relearning (or savings) during re-exposure to the prisms. Crucially, I found that challenging balance significantly enhanced savings during walking. In my third study, I determined how a stability consequence associated with movement errors affected sensorimotor learning. Two groups of participants adapted to a new visuomotor mapping while performing a precision walking task either with or without the possibility of experiencing a slip perturbation when making errors. I assessed generalization of learning across two visually guided walking tasks and motor memory consolidation. To assess consolidation, I introduced an opposite direction visuomotor mapping following adaptation and evaluated relearning one week later. I found that the experiencing a physical consequence when making errors enhanced generalization and motor memory consolidation. Overall, this thesis provides a novel perspective on how the necessity for balance control contributes to sensorimotor learning, which has intriguing implications for the development of rehabilitation interventions
    • …
    corecore