12,670 research outputs found

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Querying Large Physics Data Sets Over an Information Grid

    Get PDF
    Optimising use of the Web (WWW) for LHC data analysis is a complex problem and illustrates the challenges arising from the integration of and computation across massive amounts of information distributed worldwide. Finding the right piece of information can, at times, be extremely time-consuming, if not impossible. So-called Grids have been proposed to facilitate LHC computing and many groups have embarked on studies of data replication, data migration and networking philosophies. Other aspects such as the role of 'middleware' for Grids are emerging as requiring research. This paper positions the need for appropriate middleware that enables users to resolve physics queries across massive data sets. It identifies the role of meta-data for query resolution and the importance of Information Grids for high-energy physics analysis rather than just Computational or Data Grids. This paper identifies software that is being implemented at CERN to enable the querying of very large collaborating HEP data-sets, initially being employed for the construction of CMS detectors.Comment: 4 pages, 3 figure

    Ontology engineering for simulation component reuse

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are widely used in industry, although they have yet to operate across organizational boundaries. Reuse across organizations is restricted by the same semantic issues that restrict the inter-organizational use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architectures provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontologies to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of an ontology, connector software and web service discovery architecture. The ontology is extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers. The ontology engineering framework and discovery architecture provide a novel approach to inter-organizational simulation, adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Challenges and complexities in application of LCA approaches in the case of ICT for a sustainable future

    Get PDF
    In this work, three of many ICT-specific challenges of LCA are discussed. First, the inconsistency versus uncertainty is reviewed with regard to the meta-technological nature of ICT. As an example, the semiconductor technologies are used to highlight the complexities especially with respect to energy and water consumption. The need for specific representations and metric to separately assess products and technologies is discussed. It is highlighted that applying product-oriented approaches would result in abandoning or disfavoring of new technologies that could otherwise help toward a better world. Second, several believed-untouchable hot spots are highlighted to emphasize on their importance and footprint. The list includes, but not limited to, i) User Computer-Interfaces (UCIs), especially screens and displays, ii) Network-Computer Interlaces (NCIs), such as electronic and optical ports, and iii) electricity power interfaces. In addition, considering cross-regional social and economic impacts, and also taking into account the marketing nature of the need for many ICT's product and services in both forms of hardware and software, the complexity of End of Life (EoL) stage of ICT products, technologies, and services is explored. Finally, the impact of smart management and intelligence, and in general software, in ICT solutions and products is highlighted. In particular, it is observed that, even using the same technology, the significance of software could be highly variable depending on the level of intelligence and awareness deployed. With examples from an interconnected network of data centers managed using Dynamic Voltage and Frequency Scaling (DVFS) technology and smart cooling systems, it is shown that the unadjusted assessments could be highly uncertain, and even inconsistent, in calculating the management component's significance on the ICT impacts.Comment: 10 pages. Preprint/Accepted of a paper submitted to the ICT4S Conferenc
    corecore