884 research outputs found

    Customer Segmentation Using Real Transactional Data in E-Commerce Platform: A Case of Online Fashion Bags Shop

    Get PDF
    Customer segmentation has been widely used in different businesses and plays important rules in customer service. How to get a suitable segmentation based on the real transactional data to fully mining the hidden customer information in the massive data is still a challenge in current e-commerce platforms. This paper develops a customer segmentation model for online shops and uses the real data from a fashion bag store as a case. This paper firstly conducts a data preprocessing to select the main customer features, then it constructs a segmentation model based on the Fuzzy C-Means algorithm, and finally accomplishes a customer prediction model using a probabilistic neural network to estimate new customer’s customer type. The results show that the customer samples are classified into three types, and the prediction accuracy is more than 90%. After that, this paper demonstrates the typical features of each type of customer and compares the new group features with the prior VIP groups. The ANOVA analysis test results show that the new groups have more significant differences than prior VIP groups, which means more effective segmentation results

    Relationship between product based loyalty and clustering based on supermarket visit and spending patterns

    Get PDF
    Loyalty of customers to a supermarket can be measured in a variety of ways. If a customer tends to buy from certain categories of products, it is likely that the customer is loyal to the supermarket. Another indication of loyalty is based on the tendency of customers to visit the supermarket over a number of weeks. Regular visitors and spenders are more likely to be loyal to the supermarket. Neither one of these two criteria can provide a complete picture of customers’ loyalty. The decision regarding the loyalty of a customer will have to take into account the visiting pattern as well as the categories of products purchased. This paper describes results of experiments that attempted to identify customer loyalty using thes e two sets of criteria separately. The experiments were based on transactional data obtained from a supermarket data collection program. Comparisons of results from these parallel sets of experiments were useful in fine tuning both the schemes of estimating the degree of loyalty of a customer. The project also provides useful insights for the development of more sophisticated measures for studying customer loyalty. It is hoped that the understanding of loyal customers will be helpful in identifying better marketing strategies

    Classification of retail products: From probabilistic ranking to neural networks

    Full text link
    Food retailing is now on an accelerated path to a success penetration into the digital market by new ways of value creation at all stages of the consumer decision process. One of the most important imperatives in this path is the availability of quality data to feed all the process in digital transformation. But the quality of data is not so obvious if we consider the variety of products and suppliers in the grocery market. Within this context of digital transformation of grocery industry, \textit{Midiadia} is Spanish data provider company that works on converting data from the retailers' products into knowledge with attributes and insights from the product labels, that is, maintaining quality data in a dynamic market with a high dispersion of products. Currently, they manually categorize products (groceries) according to the information extracted directly (text processing) from the product labelling and packaging. This paper introduces a solution to automatically categorize the constantly changing product catalogue into a 3-level food taxonomy. Our proposal studies three different approaches: a score-based ranking method, traditional machine learning algorithms, and deep neural networks. Thus, we provide four different classifiers that support a more efficient and less error-prone maintenance of groceries catalogues, the main asset of the company. Finally, we have compared the performance of these three alternatives, concluding that traditional machine learning algorithms perform better, but closely followed by the score-based approach.Comment: 17 pages, 8 figures, journa

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Market Segmentation Analysis and Visualization Using K-Mode Clustering Algorithm for E-Commerce Business

    Get PDF
    Today all business organizations are adopting data driven strategies to generate more revenue out of their business. Growing startups are investing a lot of money in data economy to maximize profits of business organizations by developing intelligent tools backed by machine learning and artificial intelligence. The nature of BI tool depends on factor like business goals, size, model, technology etc. In this paper architecture of business intelligence tool and decision process has been discussed with a focus on market segmentation, based on user behavior analysis using k-mode clustering algorithm and user geographical distributions. The proposed toolkit also incorporates interactive visualizations and maps

    Social media data analytics to improve supply chain management in food industries

    Full text link
    © 2017 Elsevier Ltd This paper proposes a big-data analytics-based approach that considers social media (Twitter) data for the identification of supply chain management issues in food industries. In particular, the proposed approach includes text analysis using a support vector machine (SVM) and hierarchical clustering with multiscale bootstrap resampling. The result of this approach included a cluster of words which could inform supply-chain (SC) decision makers about customer feedback and issues in the flow/quality of food products. A case study in the beef supply chain was analysed using the proposed approach, where three weeks of data from Twitter were used

    Propagation of uncertainty in a knowledge-based system to assess energy management strategies for new technologies

    Get PDF
    The goal of this project is to investigate the propagation of uncertainty in a knowledge-based system that assesses energy management strategies for new gas and electric technologies that can help reduce energy consumption and demand. The new technologies that have been investigated include lighting, electric heat pumps, motors, refrigerators, microwave clothes dryers, freeze concentration, electric vehicles, gas furnaces, gas heat pumps, engine-driven chillers, absorption chillers, and natural gas vehicles distributed throughout the residential, commercial, industrial, and transportation sectors;The description of a complex assessment system may be simplified by allowing some degree of uncertainty. A number of uncertainty-representing mechanisms, such as probability theory, certainty factors, Dempster-Shafer theory, fuzzy logic, rough sets, non-numerical methods, and belief networks, were reviewed and compared. The proper application of uncertainty provides an effective and efficient way to represent knowledge;A knowledge-based system has been developed to assess the impacts of rebate programs on customer adoption of new technologies and, hence, the reductions in energy and demand. Three modes have been programmed: (1) one in which uncertainty is not considered, (2) another where fuzzy logic with linguistic variables is used to represent uncertainty, and (3) one in which uncertainty is represented using Dempster-Shafer theory with basic probability assignments. A correlation for rebate, expected (energy) savings, and customer adoption is employed in the knowledge base. Predictions for annual adoption of a new technology are made for specified useful life, rebate, and expected savings; or a suggested rebate can be determined for specified useful life, expected savings, and annual adoption. With input for energy use and demand for each technology, the impacts of rebate programs on energy use and power demand can be evaluated;This report and the knowledge-based system should help utilities determine these new technologies that are most promising and these strategies that should be emphasized in their energy management programs
    corecore