27,844 research outputs found

    Adaptive dynamic path re-planning RRT algorithms with game theory for UAVs

    Get PDF
    The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots

    Air Traffic Management Safety Challenges

    No full text
    The primary goal of the Air Traffic Management (ATM) system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. Safety analysts and aviation decision-makers have to make safety assessments based on statistically incomplete evidence. If future risks cannot be estimated with precision, then how is safety to be assured with traffic growth and operational/technical changes? What are the design implications for the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? ATM accident precursors arise from (eg) pilot/controller workload, miscommunication, and lack of upto- date information. Can these accident precursors confidently be ‘designed out’ by (eg) better system knowledge across ATM participants, automatic safety checks, and machine rather than voice communication? Future potentially hazardous situations could be as ‘messy’ in system terms as the Überlingen mid-air collision. Are ATM safety regulation policies fit for purpose: is it more and more difficult to innovate, to introduce new technologies and novel operational concepts? Must regulators be more active, eg more inspections and monitoring of real operational and organisational practices

    Air Traffic Safety: continued evolution or a new Paradigm.

    Get PDF
    The context here is Transport Risk Management. Is the philosophy of Air Traffic Safety different from other modes of transport? – yes, in many ways, it is. The focus is on Air Traffic Management (ATM), covering (eg) air traffic control and airspace structures, which is the part of the aviation system that is most likely to be developed through new paradigms. The primary goal of the ATM system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. What are the past and current methodologies for ATM risk assessment; and will they work effectively for the kinds of future systems that people are now imagining and planning? The title contrasts ‘Continued Evolution’ and a ‘New Paradigm’. How will system designers/operators assure safety with traffic growth and operational/technical changes that are more than continued evolution from the current system? What are the design implications for ‘new paradigms’, such as the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? Achieving and proving safety for NextGen and SESAR is an enormously tough challenge. For example, it will need to cover system resilience, human/automation issues, software/hardware performance/ground/air protection systems. There will be a need for confidence building programmes regarding system design/resilience, eg Human-in-the-Loop simulations with ‘seeded errors’

    Analyzing helicopter evasive maneuver effectiveness against rocket-propelled grenades

    Get PDF
    It has long been acknowledged that military helicopters are vulnerable to ground-launched threats, in particular, the RPG-7 rocket-propelled grenade. Current helicopter threat mitigation strategies rely on a combination of operational tactics and selectively placed armor plating, which can help to mitigate but not entirely remove the threat. However, in recent years, a number of active protection systems designed to protect land-based vehicles from rocket and missile fire have been developed. These systems all use a sensor suite to detect, track, and predict the threat trajectory, which is then employed in the computation of an intercept trajectory for a defensive kill mechanism. Although a complete active protection system in its current form is unsuitable for helicopters, in this paper, it is assumed that the active protection system’s track and threat trajectory prediction subsystem could be used offline as a tool to develop tactics and techniques to counter the threat from rocket-propelled grenade attacks. It is further proposed that such a maneuver can be found by solving a pursuit–evasion differential game. Because the first stage in solving this problem is developing the capability to evaluate the game, nonlinear dynamic and spatial models for a helicopter, RPG-7 round, and gunner, and evasion strategies were developed and integrated into a new simulation engine. Analysis of the results from representative vignettes demonstrates that the simulation yields the value of the engagement pursuit–evasion game. It is also shown that, in the majority of cases, survivability can be significantly improved by performing an appropriate evasive maneuver. Consequently, this simulation may be used as an important tool for both designing and evaluating evasive tactics and is the first step in designing a maneuver-based active protection system, leading to improved rotorcraft survivability

    Probabilistic Reachability Analysis for Large Scale Stochastic Hybrid Systems

    Get PDF
    This paper studies probabilistic reachability analysis for large scale stochastic hybrid systems (SHS) as a problem of rare event estimation. In literature, advanced rare event estimation theory has recently been embedded within a stochastic analysis framework, and this has led to significant novel results in rare event estimation for a diffusion process using sequential MC simulation. This paper presents this rare event estimation theory directly in terms of probabilistic reachability analysis of an SHS, and develops novel theory which allows to extend the novel results for application to a large scale SHS where a very huge number of rare discrete modes may contribute significantly to the reach probability. Essentially, the approach taken is to introduce an aggregation of the discrete modes, and to develop importance sampling relative to the rare switching between the aggregation modes. The practical working of this approach is demonstrated for the safety verification of an advanced air traffic control example
    corecore